基本不等式
課題: §3.4
【學(xué)習(xí)目標(biāo)】
1.知識與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號“≥”取等號的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;
2.過程與方法:通過實(shí)例探究抽象基本不等式;
3.情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣
【能力培養(yǎng)】
培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、規(guī)范的學(xué)習(xí)能力,分析問題、解決問題的能力。
【教學(xué)重點(diǎn)】
應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式 的證明過程;及其在求最值時(shí)初步應(yīng)用
【教學(xué)難點(diǎn)】
基本不等式 等號成立條件
【教學(xué)過程】
一、課題導(dǎo)入
基本不等式 的幾何背景:如圖是在北京召開的第24界國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),教師引導(dǎo)學(xué)生從面積的關(guān)系去找不等關(guān)系。
二、講授新課
1.問題探究——探究圖形中的不等關(guān)系。
將圖中的“風(fēng)車”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為 。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為 。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式: 。
當(dāng)直角三角形變?yōu)榈妊苯侨切危碼=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有 。
2.總結(jié)結(jié)論:一般的,如果
(結(jié)論的得出盡量發(fā)揮學(xué)生自主能動(dòng)性,讓學(xué)生總結(jié),教師適時(shí)點(diǎn)撥引導(dǎo))
3.思考證明:(讓學(xué)生嘗試給出它的證明)
4.特別的,如果a>0,b>0,我們用 分別代替a、b ,可得,
通常我們把上式寫作:
①從不等式的性質(zhì)推導(dǎo)基本不等式
用分析法證明:(略)
②理解基本不等式 的幾何意義
探究:對課本第98頁的“探究”( 幾何證明)
注:在數(shù)學(xué)中,我們稱 為a、b的算術(shù)平均數(shù),稱 為a、b的幾何平均數(shù).本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).
5、例:當(dāng) 時(shí), 取什么值, 的值最小?最小值是多少?
6、課時(shí)小結(jié)
本節(jié)課,我們學(xué)習(xí)了重要不等式a2+b2≥2ab;兩正數(shù)a、b的算術(shù)平均數(shù)( ),幾何平均數(shù)( )及它們的關(guān)系( ≥ ).它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù).它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將進(jìn)一步學(xué)習(xí)它們的應(yīng)用).
7、作業(yè):
課本第100頁習(xí)題[a]組的第1、2題
板書 設(shè) 計(jì)
課題: §3.4基本不等式
一、兩個(gè)不等式
二、例題及練習(xí)
【教后小結(jié)】