中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高二數學教案 > 直線的方程(精選10篇)

直線的方程

發布時間:2022-12-02

直線的方程(精選10篇)

直線的方程 篇1

  教學目標

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標:

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程:

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇2

  教學目標

  (1)把握由一點和斜率導出直線方程的方法,把握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.

  (3)把握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程非凡式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成非凡式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種非凡形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程非凡形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證實.

  2.教法建議

  (1)教材中求直線方程采取先非凡后一般的思路,非凡形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,非凡是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注重正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注重聯系實際和其它學科,教師要注重引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地把握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標:

  (1)把握直線方程的一般形式,把握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證實

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成非凡與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證實.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程:

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的熟悉統一到如下問題:

  問題1“任意直線的方程都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步熟悉到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注重:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  問題2任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  動畫演示

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線非凡形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了非凡與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業等環節的設計在此從略

直線的方程 篇3

  教學目標

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標:

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程:

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇4

  教學目標

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業等環節的設計在此從略

直線的方程 篇5

  教學目標 

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標 

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程 

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇6

  教學目標 

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標 

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程 

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇7

  一、素質教育目標1、知識教學點⑴直線方程的點斜式、斜截式、兩點式、截距式和一般式,它們之間的內在聯系 ⑵直線與二元一次方程之間的關系 ⑶由已知條件寫出直線的方程 ⑷根據直線方程求出直線的斜率、傾斜角、截距,能畫方程表示的直線 2、能力訓練點(1)       通過對直線方程的點斜式的研究,培養學生由特殊到一般的研究方法 (2)       通過對二元一次方程與直線的對應關系的認識和理解,培養學生的數、形轉化能力 (3)       通過運用直線方程的知識解答相關問題的訓練,培養學生靈活運用知識分析問題、解決問題的能力。 二、學法指導本節主要學習直線方程的五種形式,應理解并記憶公式的內容,特別要搞清各個公式的適用范圍:點斜式和斜截式需要斜率存在,而兩點式不能表示與坐標軸垂直的直線,截距式不能表示過原點及與坐標軸垂直的直線。一般式雖然可表示任意直線但它所含的變量多,故在運用時要靈活選擇公式,不丟解不漏解。三、教學重點、難點   1、重點:直線的點斜式和一般式的推導,由已知條件求直線的方程 2、難點:直線的點斜式和一般式的推導,如何選擇方程的形式,如何簡化運算過程。 四、課時安排本課題安排3課時 五、教與學過程設計第一課時 直線的方程-點斜式、斜截式●教學目標1.理解直線方程點斜式的形式特點和適用范圍. 2.了解求直線方程的一般思路. 3.了解直線方程斜截式的形式特點. ●教學重點直線方程的點斜式●教學難點點斜式推導過程的理解.●教學方法學導式●教具準備幻燈片●教學過程1、創設情境已知直線l過點(1,2),斜率為2,則直線l上的任一點應滿足什么條件? 分析:設q(x,y)為直線l上的任一點,則kpq= 1,即(y―1)/(x―1)= 2(x≠1),整理得y―2=2(x―1)又點(1,2)符合上述方程,故直線l上的任一點應滿足條件y―2=2(x―1)回顧解題用到的知識點:過兩點的斜率的公式:經過兩點p1(x1,y1),p2(x2,y2)的直線的斜率公式是:        2、提出問題問:直線l過點(1,2),斜率為2,則直線l的方程是y―2=2(x―1)嗎?回想一下直線的方程與方程的直線的概念:  以一個方程的解為坐標的點都是某條直線上的點,反過來,這條直線上的點的坐標都是這個方程的解,這時,這個方程叫做這條直線的方程,這條直線叫做這個方程的直線。直線l上的點都是這個方程的解;反過來,以這個方程的解為坐標的點都在直線l上,所以直線l的方程是y―2=2(x―1)3、解決問題直線方程的點斜式: y ―y1 =k( x ―x1) 其中( )為直線上一點坐標, k為直線斜率. 推導過程: 若直線l經過點 ,且斜率為k,求l方程。 設點 p(x,y)是直線l上任意一點, 根據經過兩點的直線的斜率公式, 得 ,可化為 . 當x = x1時也滿足上述方程。 所以,直線l方程是 . 說明:①這個方程是由直線上一點和斜率確定的; ②當直線l的傾斜角為0°時,直線方程為 ; ③當直線傾斜角為90°時,直線沒有斜率,它的方程不能用點斜式表示.這時直線方程為: . 4、反思應用. 例1.一條直線經過點p1(-2,3),傾斜角 =45°,求這條直線方程,并畫出圖形. 解:這條直線經過點p1(-2,3),斜率是: . 代入點斜式方程,得 這就是所求的直線方程,圖形如圖中所示

  說明:例1是點斜式方程的直接運用,要求學生熟練掌握,并具備一定的作圖能力. 鞏固訓練: 例2.直線l過點a(-1 ,-3),其傾斜角等于直線y=2x的傾斜角的2倍,求直線l 的方程。 分析:已知所求直線上一點的坐標,故只要求直線的斜率。所以可以根據條件,先求出y=2x的傾斜角,再求出l的傾斜角,進而求出斜率。 解:設所求直線l的斜率為k,直線y=2x的傾斜角為α,則 tanα=2 ,  k= tan2α 代入點斜式,得 即:4x + 3y + 13 = 0 例3:已知直線的斜率為k, 與y軸的交點是p (0 ,b ), 求直線l 的方程. 解:將點p (0,b), k代入直線方程的點斜式,得 y-b=k(x-0)  即 直線的斜截式:y = kx + b, 其中k為直線的斜率,b為直線在y軸上的截距。 說明:①b為直線l在y軸上截距; ②斜截式方程可由過點(0,b)的點斜式方程得到; ③當 時,斜截式方程就是一次函數的表示形式. 想一想:點斜式、斜截式的適用范圍是什么? 當直線與x軸垂直時,不適用。 練習:直線l的方程是4x + 3y + 13 = 0,求它的斜率及它在y軸上的截距。 分析:由4x + 3y + 13 = 0得y = ―4x/3―13/3     所以斜率是-4/3, 在y軸上的截距是―13/3。 例4 直線l在y軸上的截距是-7,傾斜角為45°,求直線l的方程。分析:直線l在x軸上的截距是-7,即直線l過點(0,-7) 又傾斜角為45°,即斜率k = 1∴直線l的方程是y = x - 7 ●課堂小結 數學思想:數形結合、特殊到一般數學方法:公式法知識點:點斜式、斜截式●課后作業   p44習題7.2  1 (2)(3),2,3 思考題:一直線被兩直線l1:4x+y+6=0, l2:3x―5y―6=0截得的線段的中點恰好是坐標原點,求該直線方程。 分析:設所求直線與直線l1:4x+y+6=0, l2:3x―5y―6=0交于點a、b, 設a(a, b),則b(-a,- b), ∵a、b分別在直線l1:4x+y+6=0, l2:3x―5y―6=0 ∴4a+b+6=0, 3a―5b―6=0 ∴a+6b=0 ∴所求直線的方程是x+6y=0 教學后記:

直線的方程 篇8

  教學目標 

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標 

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程 

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點 , 的,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為 、在 軸上的截距為 的直線.

  (2)當 時,由于 、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇9

  教學目標 

  (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

  (6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學建議

  1.教材分析

  (1)知識結構

  由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

  (2)重點、難點分析

  ①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.

  解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

  ②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

  直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

  (3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

  (4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

  (6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

  (7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

  (8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

  教學設計示例

  直線方程的一般形式

  教學目標 

  (1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

  (2)理解直線與二元一次方程的關系及其證明

  (3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

  教學重點、難點:直線方程的一般式.直線與二元一次方程  (  不同時為0)的對應關系及其證明.

  教學用具:計算機

  教學方法:啟發引導法,討論法

  教學過程 

  下面給出教學實施過程設計的簡要思路:

  教學設計思路:

  (一)引入的設計

  前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

  問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是  ,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

  問:求出過點  ,  的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是  (或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

  肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

  啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

  學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

  (二)本節主體內容教學的設計

  這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學生或獨立研究,或合作研究,教師巡視指導.

  經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價,確定最優方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當 存在時,直線 的截距 也一定存在,直線 的方程可表示為  ,它是二元一次方程.

  當 不存在時,直線 的方程可表示為  形式的方程,它是二元一次方程嗎?

  學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

  平面直角坐標系中直線  上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程  解的形式也是二元方程的解的形式,因此把它看成形如  的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結論:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于  、  的二元一次方程.

  至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成  或  的形式,準確地說應該是“要么形如  這樣,要么形如  這樣的方程”.

  同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

  學生們不難得出:二者可以概括為統一的形式.

  這樣上邊的結論可以表述如下:

  在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如  (其中 、 不同時為0)的二元一次方程.

  啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

  【問題2】任何形如  (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

  師生共同討論,評價不同思路,達成共識:

  回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程  (其中 、 不同時為0)系數 是否為0恰好對應斜率 是否存在,即

  (1)當 時,方程可化為      

  這是表示斜率為  、在 軸上的截距為  的直線.

  (2)當  時,由于  、 不同時為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結論:

  在平面直角坐標系中,任何形如  (其中 、 不同時為0)的二元一次方程都表示一條直線.

  為方便,我們把  (其中  、  不同時為0)稱作直線方程的一般式是合理的.

  【動畫演示】

  演示“直線各參數.gsp”文件,體會任何二元一次方程都表示一條直線.

  至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

  (三)練習鞏固、總結提高、板書和作業 等環節的設計在此從略

直線的方程 篇10

  以下是2篇關于高中數學《直線的方程》教學反思的范文,供大家參考,希望對大家有幫助!

  高中數學《直線的方程》教學反思一

  直線方程的教學是在學習了直線的傾斜角和斜率公式之后推導引入直線的點斜式方程,進一步延伸出其他形式的直線方程和相互轉化,為下面直線方程的應用如中點公式、距離公式、直線和圓的位置關系等打下良好的基礎。

  以下是在課堂教學中的幾點體會和建議:

  (一)初步培養了學生平面解析幾何的思想和一般方法。

  在初中,學生熟知一次函數y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過來任意畫一條,要同學們寫出方程表達式,學生剛開始會無從下手,從而激發學生學習的興趣。隨著教學的展開,讓學生逐步形成平面解析幾何的方法,如建立坐標啊,設點啊,建立關系式啊,得出方程啊等等,初步培養學生的平面解析幾何思維,為后面學習圓、橢圓和相關圓錐曲線打下良好的基礎。

  (二)在教學中貫徹“精講多練”的教學改革探索。

  我們都知道,對于職中的學生,基礎差,底子薄,理解能力差,動手能力差,要想讓學生學有所得,最好的辦法就是精講多練,提高學生的動手能力。因此在教學中,我們通常是由練習引入,簡單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業,做到每個內容經過三輪的練習,讓學生能夠很容易的掌握。

  (三)注意數形結合的教學。

  解析幾何的特點就是形數結合,而形數結合的思想是一種重要的數學思想,是教學大綱中要求學生學習的內容之一,所以在教學中要注意這種數學思想的教學。每一種直線方程的講解都進行畫圖演示,讓學生對每一種直線方程所需的條件根深蒂固,如點斜式一定要點和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個坐標軸上的截距等等。并在直線方程的相互轉化過程中也配以圖形(請參考一般方程的課件)

  (四)注重直線方程的承前啟后的作用。

  教材承接了初中函數的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來介紹平面解析幾何的思想和一般方法,可見本節內容所處的重要地位,學好直線對以后的學習尤為重要。事實上,教材在研究了直線的方程和討論了直線的幾何性質后,緊接著就以直線方程為基礎,進一步討論曲線與方程的一般概念。

  高中數學《直線的方程》教學反思二

  一.教學對象方面:

  本節課面對的學生是文科班位于中等層次的班級。文科班的學生對于數學普遍存在畏難情緒,所以在教學設計之初就立足于從簡到難的思想,所以在教學過程中有了從特殊化到一般化的,再從一般化到特殊化這樣兩個環節并且設計的數據都比較簡單易算,希望能夠引起學生學習興趣,并從中體會到數學學習中解決問題的思維過程。從課堂效果來看這個目的基本達到,學生課堂反映較好,參與積極,氣氛熱烈。

  二.教學內容方面:

  本節課主要解決的問題是掌握直線的點斜式方程,斜截式方程。直線是解析幾何部分最基礎的圖形,其方程形式有點斜式,斜截式,兩點式,截距式,一般式這五種形式。在這五種形式中出現最頻繁,最基本的就是點斜式和斜截式。所以對這兩種形式要做到能夠熟練的根據條件選擇合適的直線方程形式。在課堂中可以發現學生已經基本能夠達到這一點。但是也存在幾個方面的問題,如果直接提供一點一斜率,學生馬上能夠把直線方程的形式脫口而出。但是如果提供的是傾斜角,對傾斜角加以適當變化的話,部分學生還是存在一定的困難,有些是對斜率公式的不熟悉,有些是對三角函數公式的不熟悉造成的。說明部分學生對于三角函數部分的內容基礎不扎實遺忘率較高,對于斜率和傾斜角的關系的理解還是存在疏漏之處,思維嚴密性需要提高。

  三.教學改進:

  第一需要繼續強化基本概念的教學,深化學生對基本概念的理解。可以通過一些小練習,如填空,選擇等加強學生邏輯思維能力的訓練。如課堂練習中的變式還是較好的一種方式。以變式這種方式更易于學生發現問題的相同與不同之處,如果能夠讓學生自己加以適當的總結,老師再加點評,那效果會更好。不過這對課堂時間的控制要求較高,所以采用何種方式展開需要更多的思考。

  第二需要設置梯度,逐步提高難度。由于本節課面對的對象,而且這是直線方程的第一節課,所以設置的內容還是簡單易懂的,但是以后的課程中難度要求還是需要逐步提高綜合應用能力,這需要在以后的課程中逐步貫徹。

直線的方程(精選10篇) 相關內容:
  • 直線的方程

    教學目標 (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出. (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握. (3)掌握直線方程各種形式之間的互化. (4)...

  • 直線的方程

    教學目標 (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出. (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握. (3)掌握直線方程各種形式之間的互化. (4)...

  • 高中數學《直線的方程》教學反思

    以下是2篇關于高中數學《直線的方程》教學反思的范文,供大家參考,希望對大家有幫助!高中數學《直線的方程》教學反思一直線方程的教學是在學習了直線的傾斜角和斜率公式之后推導引入直線的點斜式方程,進一步延伸出其他形式的直線方程和...

  • 數學教案-直線的方程

    教學目標 (1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程. (2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程. (3)掌握直線方程各種...

  • 《方程》教案(精選17篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據直觀情境里的等量關系列方程。...

  • 第一單元 方程 教案(通用2篇)

    第一課時 方程的意義教學內容:教科書第1~2頁的內容及練習一的1~3題。教學目標:1、通過學習,使學生理解方程的含義,知道像x+50=150、2x=200這樣含有未知數的等式是方程。2、培養學生概括、歸納的能力。...

  • 第一單元《方程》第三課時(精選17篇)

    教學內容:教科書第6頁練習一的第7~12題。 教學目標: 1、通過練習,使學生進一步體會方程的意義及等式的性質。 2、通過練習,使學生能根據等式的性質,正確地解方程及檢驗。...

  • 《方程》教案范文合集(精選13篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據直觀情境里的等量關系列方程。...

  • 第一單元《方程》第一課時(精選12篇)

    第一課時 教學內容:教科書第1~2頁,例1、例2、試一試、練一練,練習一第1~3題。 教學目標: 1、認識等式,以具體的實例引導學生通過自主的探索活動,初步理解等式的特征。...

  • 第一單元 方程 5、整理與練習(精選3篇)

    第一單元 方程7、整理與練習(3)主備人:孫麗萍教學內容:教科書第9頁第11-14題。教學目標:1、在實踐活動中進一步體會列方程解決問題的靈活性及其獨特價值,提高分析問題和解決問題的能力。...

  • 式與方程教學設計(精選7篇)

    教學目標:1、使學生進一步體會方程的意義和思想,會用等式的性質解一些簡單的方程。2、使學生進一步認識用字母表示數及其作用,能正確地用含有字母的式子表示數量及數量關系、計算公式,3、培養學生抽象,概括的能力。...

  • 《方程》教案范文錦集(精選13篇)

    教學內容:教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。教學目標:1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。...

  • 理想氣體的狀態方程(通用2篇)

    教學目標 知識目標1、知道摩爾氣體常量.了解克拉珀龍方程的推導過程.2、在理解克拉珀龍方程內容的基礎上學會方程的應用.3、進一步強化對氣體狀態方程的應用.能力目標通過克拉珀龍方程的推導,培養學生對問題的分析、推理、綜合能力.情感目...

  • 稍復雜的方程(精選12篇)

    教學內容: 列方程解含有兩個未知數的應用題(例3,練習十三的第4、5、6、7題。)教學目標:1.初步學會分析“已知有兩個數的和或差,和兩個數的倍數關系,求兩數各是多少”的應用題,正確地列出方程解答。...

  • 第一單元《方程》第二課時(精選13篇)

    第二課時 教學內容:教科書第3~4頁,例3、例4、試一試、練一練,練習一第4~6題。 教學目標: 1、使學生在具體的情景中的初步理解“等式的兩邊同時加上或減去同一個數,所得的結果仍然是等式”,會用等式的性質解簡單的方程。...

  • 高二數學教案
主站蜘蛛池模板: java性无码hd中文 | 免费wwwxxx| 欧美日韩无套内射另类 | 51自拍视频| 色婷婷999 | 无码成人午夜在线观看 | 一区二区三区四区国产精品视频 | 国产精品久久久久9999高清 | www·377黄·com| 国产在线拍揄自揄视频菠萝 | 江苏极品身材白嫩少妇自拍 | 国产精品久久久久久粉嫩影视 | 国产免费观看av | 麻豆影片 | 精品国产一区二区精华 | 91免费黄视频 | av在线不卡免费看 | 99久久精品国产一区二区三区 | 免费的欧美gv在线网站 | 久久久久人妻精品一区蜜桃 | 国产三级在线免费观看 | 让少妇爽到高潮视频 | 久久网综合 | 国产女同互慰高潮流水视频 | 欧美劲爆婷婷五月久久 | 精品资源在线看 | 夜夜草影视 | 日本男人日女人视频 | 91看片成人 | 中日韩在线 | 草草久久97超级碰碰碰 | 欧美a一级 | 无码人妻一区二区三区兔费 | 最近免费中文字幕大全高清大全10 | 在线免费观看h视频 | 日本无码一区二区三区有码中出 | 懂色一区二区二区av免费观看 | 国产人免费人成免费视频 | 国产成人午夜性a一级毛片 69亚洲精品久久久蜜桃小说 | 77777五月色婷婷丁香视频在线 | 免费av播放 |