一元二次方程的解法
教學目標
1. 初步掌握用直接開平方法解一元二次方程,會用直接開平方法解形如 的方程;
2. 初步掌握用配方法解一元二次方程,會用配方法解數字系數的一元二次方程;
3. 掌握一元二次方程的求根公式的推導,能夠運用求根公式解一元二次方程;
4. 會用因式分解法解某些一元二次方程。
5. 通過對一元二次方程解法的教學,使學生進一步理解“降次”的數學方法,進一步獲得對事物可以轉化的認識。
教學重點和難點
重點:一元二次方程的四種解法。
難點:選擇恰當的方法解一元二次方程。
教學建議:
一、教材分析:
1.知識結構:
2.重點、難點分析
(1)熟練掌握開平方法解一元二次方程
用開平方法解一元二次方程,一種是直接開平方法,另一種是配方法。
如果一元二次方程的一邊是未知數的平方或含有未知數的一次式的平方,另一邊是一個非負數,或完全平方式,如方程 , 和方程 就可以直接開平方法求解,在開平方時注意取正、負兩個平方根。
配方法解一元二次方程,就是利用完全平方公式,把一般形式的一元二次方程,轉化為 的形式來求解。配方時要注意把二次項系數化為1和方程兩邊都加上一次項系數一半的平方這兩個關鍵步驟。
(2)熟記求根公式 ( )和公式中字母的意義在使用求根公式時要注意以下三點:
1)把方程化為一般形式,并做到 、 、 之間沒有公因數,且二次項系數為正整數,這樣代入公式計算較為簡便。
2)把一元二次方程的各項系數 、 、 代入公式時,注意它們的符號。
3)當 時,才能求出方程的兩根。
(3)抓住方程特點,選用因式分解法解一元二次方程
如果一個一元二次方程的一邊是零,另一邊易于分解成兩個一次因式時,就可以用因式分解法求解。這時只要使每個一次因式等于零,分別解兩個一元一次方程,得到兩個根就是一元二次方程的解。
我們共學習了四種解一元二次方程的方法:直接開平方法;配方法;公式法和因式分解法。解方程時,要認真觀察方程的特征,選用適當的方法求解。
二、教法建議
1. 教學方法建議采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,學生獲取知識必須通過學生自己一系列思維活動完成,啟發誘導學生深入思考問題,有利于培養學生思維靈活、嚴謹、深刻等良好思維品質.
2. 注意培養應用意識.教學中應不失時機地使學生認識到數學源于實踐并反作用于實踐.
第 1 2 頁