一元二次方程的應(yīng)用(精選16篇)
一元二次方程的應(yīng)用 篇1
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
一元二次方程的應(yīng)用 篇2
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn):根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
一元二次方程的應(yīng)用 篇3
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
一元二次方程的應(yīng)用 篇4
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
一元二次方程的應(yīng)用 篇5
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn):根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
第 1 2 頁(yè)
一元二次方程的應(yīng)用 篇6
一元二次方程的應(yīng)用中例1:用22cm長(zhǎng)的鐵絲折成一個(gè)面積為30cm2的矩形,求這個(gè)矩形的長(zhǎng)與寬。這是面積問(wèn)題中的一個(gè)典型例題,我在引導(dǎo)學(xué)生解決此題之后,馬上改編為:用22cm長(zhǎng)的鐵絲能不能折成一個(gè)面積為32cm2的矩形?試分析你的結(jié)論。通過(guò)此題,與一元二次方程的判別式聯(lián)系起來(lái),前后知識(shí)融會(huì)貫通。又改編為:有一面積為150 m2的長(zhǎng)方形雞場(chǎng),雞場(chǎng)的一邊*墻(墻長(zhǎng)18)另三邊用竹籬笆圍成,如果竹籬笆的長(zhǎng)為35,求雞場(chǎng)的長(zhǎng)與寬。
通過(guò)變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問(wèn)題的能力逐級(jí)上升,這是這節(jié)課中的一大亮點(diǎn)。
一元二次方程的應(yīng)用 篇7
12.6 一元二次方程的應(yīng)用(二)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題.
2.教學(xué)難點(diǎn) :找等量關(guān)系.列一元二次方程解應(yīng)用題時(shí),應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗(yàn),以確定適合題意的解.例如線段的長(zhǎng)度不為負(fù)值,人的個(gè)數(shù)不能為分?jǐn)?shù)等.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用題的步驟?
(2)長(zhǎng)方形的周長(zhǎng)、面積?長(zhǎng)方體的體積?
2.例1 現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(zhǎng)方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則盒底面長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm,
據(jù)題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當(dāng)x=13時(shí),15-2x=-11(不合題意,舍去.)
答:截取的小正方形邊長(zhǎng)應(yīng)為4cm,可制成符合要求的無(wú)蓋盒子.
練習(xí)1.章節(jié)前引例.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
練習(xí)2.教材P.42中4.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
注意:全面積=各部分面積之和.
剩余面積=原面積-截取面積.
例2 要做一個(gè)容積為750cm3,高是6cm,底面的長(zhǎng)比寬多5cm的長(zhǎng)方形匣子,底面的長(zhǎng)及寬應(yīng)該各是多少(精確到0.1cm)?
分析:底面的長(zhǎng)和寬均可用含未知數(shù)的代數(shù)式表示,則長(zhǎng)×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程.
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個(gè)方程x1=9.0,x2=-14.0(不合題意,舍去).
當(dāng)x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(zhǎng)為26cm的長(zhǎng)方形鐵皮.
教師引導(dǎo),學(xué)生板書(shū),筆答,評(píng)價(jià).
(四)總結(jié)、擴(kuò)展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系.
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問(wèn)題,例如線段的長(zhǎng)不能為負(fù).
3.進(jìn)一步體會(huì)數(shù)字在實(shí)踐中的應(yīng)用,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
四、布置作業(yè)
教材P.42中A3、6、7.
教材P.41中3.4
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程的應(yīng)用(二)
例1.略
例2.略
解:設(shè)……… 解:…………
………… …………
一元二次方程的應(yīng)用 篇8
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):學(xué)會(huì)用列方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
2.教學(xué)難點(diǎn) :有關(guān)增長(zhǎng)率之間的數(shù)量關(guān)系.下列詞語(yǔ)的異同;增長(zhǎng),增長(zhǎng)了,增長(zhǎng)到;擴(kuò)大,擴(kuò)大到,擴(kuò)大了.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量.
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率.
(3)實(shí)際產(chǎn)量=原產(chǎn)量×(1+增長(zhǎng)率).
2.例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個(gè)月平均每月增長(zhǎng)的百分率是多少?
分析:設(shè)平均每月的增長(zhǎng)率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(噸).
解:設(shè)平均每月的增長(zhǎng)率為x,據(jù)題意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點(diǎn)撥、板書(shū),學(xué)生回答.
注意以下幾個(gè)問(wèn)題:
(1)為計(jì)算簡(jiǎn)便、直接求得,可以直接設(shè)增長(zhǎng)的百分率為x.
(2)認(rèn)真審題,弄清基數(shù),增長(zhǎng)了,增長(zhǎng)到等詞語(yǔ)的關(guān)系.
(3)用直接開(kāi)平方法做簡(jiǎn)單,不要將括號(hào)打開(kāi).
練習(xí)1.教材P.42中5.
學(xué)生分析題意,板書(shū),筆答,評(píng)價(jià).
練習(xí)2.若設(shè)每年平均增長(zhǎng)的百分?jǐn)?shù)為x,分別列出下面幾個(gè)問(wèn)題的方程.
(1)某工廠用二年時(shí)間把總產(chǎn)值增加到原來(lái)的b倍,求每年平均增長(zhǎng)的百分率.
(1+x)2=b(把原來(lái)的總產(chǎn)值看作是1.)
(2)某工廠用兩年時(shí)間把總產(chǎn)值由a萬(wàn)元增加到b萬(wàn)元,求每年平均增長(zhǎng)的百分?jǐn)?shù).
(a(1+x)2=b)
(3)某工廠用兩年時(shí)間把總產(chǎn)值增加了原來(lái)的b倍,求每年增長(zhǎng)的百分?jǐn)?shù).
((1+x)2=b+1把原來(lái)的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點(diǎn)撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來(lái)的產(chǎn)值是a,平均每次增長(zhǎng)的百分率為x,則增長(zhǎng)一次后的產(chǎn)值為a(1+x),增長(zhǎng)兩次后的產(chǎn)值為a(1+x)2 ,…………增長(zhǎng)n次后的產(chǎn)值為S=a(1+x)n.
規(guī)律的得出,使學(xué)生對(duì)此類(lèi)問(wèn)題能居高臨下,同時(shí)培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2 某產(chǎn)品原來(lái)每件600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩個(gè)降價(jià)的百分?jǐn)?shù)相同,求每次降價(jià)百分之幾?
分析:設(shè)每次降價(jià)為x.
第一次降價(jià)后,每件為600-600x=600(1-x)(元).
第二次降價(jià)后,每件為600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:設(shè)每次降價(jià)為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價(jià)為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書(shū),筆答,評(píng)價(jià),對(duì)比,總結(jié).
引導(dǎo)學(xué)生對(duì)比“增長(zhǎng)”、“下降”的區(qū)別.如果設(shè)平均每次增長(zhǎng)或下降為x,則產(chǎn)值a經(jīng)過(guò)兩次增長(zhǎng)或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
(四)總結(jié)、擴(kuò)展
1.善于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時(shí),注意巧算;注意方程兩根的取舍問(wèn)題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長(zhǎng)率.3年、4年……,n年,應(yīng)該說(shuō)按照規(guī)律我們可以列出方程,隨著知識(shí)的增加,我們也將會(huì)解這些方程.
四、布置作業(yè)
教材P.42中A8
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程應(yīng)用(三)
1.數(shù)量關(guān)系: 例1…… 例2……
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量 分析:…… 分析……
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率 解…… 解……
(3)實(shí)際產(chǎn)量=原產(chǎn)量(1+增長(zhǎng)率)
2.最后產(chǎn)值、基數(shù)、平均增長(zhǎng)率、時(shí)間
的基本關(guān)系:
M=m(1+x)n n為時(shí)間
M為最后產(chǎn)量,m為基數(shù),x為平均增長(zhǎng)率
一元二次方程的應(yīng)用 篇9
本節(jié)是一元二次方程的應(yīng)用的繼續(xù)和發(fā)展,由于能用一元二次方程解的應(yīng)用題,一般都可以用算術(shù)方法解而需要用一元二次方程來(lái)解的應(yīng)用題,一般說(shuō)是不能用算術(shù)方法來(lái)解的,所以講本節(jié)可以使學(xué)生認(rèn)識(shí)到用代數(shù)方法解應(yīng)用題的優(yōu)越性和必要性。
列一元二次方程解應(yīng)用題,其應(yīng)用相當(dāng)廣泛,如在幾何、物理及其他學(xué)科中都有應(yīng)用;其數(shù)量關(guān)系也比可以用一元一次方程解決的問(wèn)題復(fù)雜的多。因此,本節(jié)所學(xué)習(xí)的內(nèi)容,不僅是中學(xué)數(shù)學(xué)中的重點(diǎn),也是難點(diǎn)。
在教學(xué)過(guò)程中,通過(guò)列一元二次方程解應(yīng)用題提高學(xué)生的邏輯思維能力和分析、解決問(wèn)題的能力。
一元二次方程的應(yīng)用 篇10
12.6 一元二次方程的應(yīng)用(三)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):學(xué)會(huì)用列方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
2.教學(xué)難點(diǎn) :有關(guān)增長(zhǎng)率之間的數(shù)量關(guān)系.下列詞語(yǔ)的異同;增長(zhǎng),增長(zhǎng)了,增長(zhǎng)到;擴(kuò)大,擴(kuò)大到,擴(kuò)大了.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量.
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率.
(3)實(shí)際產(chǎn)量=原產(chǎn)量×(1+增長(zhǎng)率).
2.例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個(gè)月平均每月增長(zhǎng)的百分率是多少?
分析:設(shè)平均每月的增長(zhǎng)率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(噸).
解:設(shè)平均每月的增長(zhǎng)率為x,據(jù)題意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點(diǎn)撥、板書(shū),學(xué)生回答.
注意以下幾個(gè)問(wèn)題:
(1)為計(jì)算簡(jiǎn)便、直接求得,可以直接設(shè)增長(zhǎng)的百分率為x.
(2)認(rèn)真審題,弄清基數(shù),增長(zhǎng)了,增長(zhǎng)到等詞語(yǔ)的關(guān)系.
(3)用直接開(kāi)平方法做簡(jiǎn)單,不要將括號(hào)打開(kāi).
練習(xí)1.教材P.42中5.
學(xué)生分析題意,板書(shū),筆答,評(píng)價(jià).
練習(xí)2.若設(shè)每年平均增長(zhǎng)的百分?jǐn)?shù)為x,分別列出下面幾個(gè)問(wèn)題的方程.
(1)某工廠用二年時(shí)間把總產(chǎn)值增加到原來(lái)的b倍,求每年平均增長(zhǎng)的百分率.
(1+x)2=b(把原來(lái)的總產(chǎn)值看作是1.)
(2)某工廠用兩年時(shí)間把總產(chǎn)值由a萬(wàn)元增加到b萬(wàn)元,求每年平均增長(zhǎng)的百分?jǐn)?shù).
(a(1+x)2=b)
(3)某工廠用兩年時(shí)間把總產(chǎn)值增加了原來(lái)的b倍,求每年增長(zhǎng)的百分?jǐn)?shù).
((1+x)2=b+1把原來(lái)的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點(diǎn)撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來(lái)的產(chǎn)值是a,平均每次增長(zhǎng)的百分率為x,則增長(zhǎng)一次后的產(chǎn)值為a(1+x),增長(zhǎng)兩次后的產(chǎn)值為a(1+x)2 ,…………增長(zhǎng)n次后的產(chǎn)值為S=a(1+x)n.
規(guī)律的得出,使學(xué)生對(duì)此類(lèi)問(wèn)題能居高臨下,同時(shí)培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2 某產(chǎn)品原來(lái)每件600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩個(gè)降價(jià)的百分?jǐn)?shù)相同,求每次降價(jià)百分之幾?
分析:設(shè)每次降價(jià)為x.
第一次降價(jià)后,每件為600-600x=600(1-x)(元).
第二次降價(jià)后,每件為600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:設(shè)每次降價(jià)為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價(jià)為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書(shū),筆答,評(píng)價(jià),對(duì)比,總結(jié).
引導(dǎo)學(xué)生對(duì)比“增長(zhǎng)”、“下降”的區(qū)別.如果設(shè)平均每次增長(zhǎng)或下降為x,則產(chǎn)值a經(jīng)過(guò)兩次增長(zhǎng)或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
(四)總結(jié)、擴(kuò)展
1.善于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時(shí),注意巧算;注意方程兩根的取舍問(wèn)題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長(zhǎng)率.3年、4年……,n年,應(yīng)該說(shuō)按照規(guī)律我們可以列出方程,隨著知識(shí)的增加,我們也將會(huì)解這些方程.
四、布置作業(yè)
教材P.42中A8
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程應(yīng)用(三)
1.數(shù)量關(guān)系: 例1…… 例2……
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量 分析:…… 分析……
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率 解…… 解……
(3)實(shí)際產(chǎn)量=原產(chǎn)量(1+增長(zhǎng)率)
2.最后產(chǎn)值、基數(shù)、平均增長(zhǎng)率、時(shí)間
的基本關(guān)系:
M=m(1+x)n n為時(shí)間
M為最后產(chǎn)量,m為基數(shù),x為平均增長(zhǎng)率
12.6 一元二次方程的應(yīng)用(三)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):學(xué)會(huì)用列方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
2.教學(xué)難點(diǎn) :有關(guān)增長(zhǎng)率之間的數(shù)量關(guān)系.下列詞語(yǔ)的異同;增長(zhǎng),增長(zhǎng)了,增長(zhǎng)到;擴(kuò)大,擴(kuò)大到,擴(kuò)大了.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量.
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率.
(3)實(shí)際產(chǎn)量=原產(chǎn)量×(1+增長(zhǎng)率).
2.例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個(gè)月平均每月增長(zhǎng)的百分率是多少?
分析:設(shè)平均每月的增長(zhǎng)率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(噸).
解:設(shè)平均每月的增長(zhǎng)率為x,據(jù)題意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點(diǎn)撥、板書(shū),學(xué)生回答.
注意以下幾個(gè)問(wèn)題:
(1)為計(jì)算簡(jiǎn)便、直接求得,可以直接設(shè)增長(zhǎng)的百分率為x.
(2)認(rèn)真審題,弄清基數(shù),增長(zhǎng)了,增長(zhǎng)到等詞語(yǔ)的關(guān)系.
(3)用直接開(kāi)平方法做簡(jiǎn)單,不要將括號(hào)打開(kāi).
練習(xí)1.教材P.42中5.
學(xué)生分析題意,板書(shū),筆答,評(píng)價(jià).
練習(xí)2.若設(shè)每年平均增長(zhǎng)的百分?jǐn)?shù)為x,分別列出下面幾個(gè)問(wèn)題的方程.
(1)某工廠用二年時(shí)間把總產(chǎn)值增加到原來(lái)的b倍,求每年平均增長(zhǎng)的百分率.
(1+x)2=b(把原來(lái)的總產(chǎn)值看作是1.)
(2)某工廠用兩年時(shí)間把總產(chǎn)值由a萬(wàn)元增加到b萬(wàn)元,求每年平均增長(zhǎng)的百分?jǐn)?shù).
(a(1+x)2=b)
(3)某工廠用兩年時(shí)間把總產(chǎn)值增加了原來(lái)的b倍,求每年增長(zhǎng)的百分?jǐn)?shù).
((1+x)2=b+1把原來(lái)的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點(diǎn)撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來(lái)的產(chǎn)值是a,平均每次增長(zhǎng)的百分率為x,則增長(zhǎng)一次后的產(chǎn)值為a(1+x),增長(zhǎng)兩次后的產(chǎn)值為a(1+x)2 ,…………增長(zhǎng)n次后的產(chǎn)值為S=a(1+x)n.
規(guī)律的得出,使學(xué)生對(duì)此類(lèi)問(wèn)題能居高臨下,同時(shí)培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2 某產(chǎn)品原來(lái)每件600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩個(gè)降價(jià)的百分?jǐn)?shù)相同,求每次降價(jià)百分之幾?
分析:設(shè)每次降價(jià)為x.
第一次降價(jià)后,每件為600-600x=600(1-x)(元).
第二次降價(jià)后,每件為600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:設(shè)每次降價(jià)為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價(jià)為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書(shū),筆答,評(píng)價(jià),對(duì)比,總結(jié).
引導(dǎo)學(xué)生對(duì)比“增長(zhǎng)”、“下降”的區(qū)別.如果設(shè)平均每次增長(zhǎng)或下降為x,則產(chǎn)值a經(jīng)過(guò)兩次增長(zhǎng)或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
(四)總結(jié)、擴(kuò)展
1.善于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時(shí),注意巧算;注意方程兩根的取舍問(wèn)題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長(zhǎng)率.3年、4年……,n年,應(yīng)該說(shuō)按照規(guī)律我們可以列出方程,隨著知識(shí)的增加,我們也將會(huì)解這些方程.
四、布置作業(yè)
教材P.42中A8
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程應(yīng)用(三)
1.數(shù)量關(guān)系: 例1…… 例2……
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量 分析:…… 分析……
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率 解…… 解……
(3)實(shí)際產(chǎn)量=原產(chǎn)量(1+增長(zhǎng)率)
2.最后產(chǎn)值、基數(shù)、平均增長(zhǎng)率、時(shí)間
的基本關(guān)系:
M=m(1+x)n n為時(shí)間
M為最后產(chǎn)量,m為基數(shù),x為平均增長(zhǎng)率
一元二次方程的應(yīng)用 篇11
12.6 一元二次方程的應(yīng)用(二)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題.
2.教學(xué)難點(diǎn) :找等量關(guān)系.列一元二次方程解應(yīng)用題時(shí),應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗(yàn),以確定適合題意的解.例如線段的長(zhǎng)度不為負(fù)值,人的個(gè)數(shù)不能為分?jǐn)?shù)等.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用題的步驟?
(2)長(zhǎng)方形的周長(zhǎng)、面積?長(zhǎng)方體的體積?
2.例1 現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(zhǎng)方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則盒底面長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm,
據(jù)題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當(dāng)x=13時(shí),15-2x=-11(不合題意,舍去.)
答:截取的小正方形邊長(zhǎng)應(yīng)為4cm,可制成符合要求的無(wú)蓋盒子.
練習(xí)1.章節(jié)前引例.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
練習(xí)2.教材P.42中4.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
注意:全面積=各部分面積之和.
剩余面積=原面積-截取面積.
例2 要做一個(gè)容積為750cm3,高是6cm,底面的長(zhǎng)比寬多5cm的長(zhǎng)方形匣子,底面的長(zhǎng)及寬應(yīng)該各是多少(精確到0.1cm)?
分析:底面的長(zhǎng)和寬均可用含未知數(shù)的代數(shù)式表示,則長(zhǎng)×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程.
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個(gè)方程x1=9.0,x2=-14.0(不合題意,舍去).
當(dāng)x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(zhǎng)為26cm的長(zhǎng)方形鐵皮.
教師引導(dǎo),學(xué)生板書(shū),筆答,評(píng)價(jià).
(四)總結(jié)、擴(kuò)展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系.
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問(wèn)題,例如線段的長(zhǎng)不能為負(fù).
3.進(jìn)一步體會(huì)數(shù)字在實(shí)踐中的應(yīng)用,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
四、布置作業(yè)
教材P.42中A3、6、7.
教材P.41中3.4
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程的應(yīng)用(二)
例1.略
例2.略
解:設(shè)……… 解:…………
………… …………
12.6 一元二次方程的應(yīng)用(二)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題.
2.教學(xué)難點(diǎn) :找等量關(guān)系.列一元二次方程解應(yīng)用題時(shí),應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗(yàn),以確定適合題意的解.例如線段的長(zhǎng)度不為負(fù)值,人的個(gè)數(shù)不能為分?jǐn)?shù)等.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用題的步驟?
(2)長(zhǎng)方形的周長(zhǎng)、面積?長(zhǎng)方體的體積?
2.例1 現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(zhǎng)方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則盒底面長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm,
據(jù)題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當(dāng)x=13時(shí),15-2x=-11(不合題意,舍去.)
答:截取的小正方形邊長(zhǎng)應(yīng)為4cm,可制成符合要求的無(wú)蓋盒子.
練習(xí)1.章節(jié)前引例.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
練習(xí)2.教材P.42中4.
學(xué)生筆答、板書(shū)、評(píng)價(jià).
注意:全面積=各部分面積之和.
剩余面積=原面積-截取面積.
例2 要做一個(gè)容積為750cm3,高是6cm,底面的長(zhǎng)比寬多5cm的長(zhǎng)方形匣子,底面的長(zhǎng)及寬應(yīng)該各是多少(精確到0.1cm)?
分析:底面的長(zhǎng)和寬均可用含未知數(shù)的代數(shù)式表示,則長(zhǎng)×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程.
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個(gè)方程x1=9.0,x2=-14.0(不合題意,舍去).
當(dāng)x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(zhǎng)為26cm的長(zhǎng)方形鐵皮.
教師引導(dǎo),學(xué)生板書(shū),筆答,評(píng)價(jià).
(四)總結(jié)、擴(kuò)展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系.
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問(wèn)題,例如線段的長(zhǎng)不能為負(fù).
3.進(jìn)一步體會(huì)數(shù)字在實(shí)踐中的應(yīng)用,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.
四、布置作業(yè)
教材P.42中A3、6、7.
教材P.41中3.4
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程的應(yīng)用(二)
例1.略
例2.略
解:設(shè)……… 解:…………
………… …………
一元二次方程的應(yīng)用 篇12
一元二次方程的應(yīng)用(一)
一、素質(zhì)教育目標(biāo)
(-)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點(diǎn):通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù).
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個(gè)為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個(gè)方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個(gè)方程,得x1=18,x2=-18.
當(dāng)x=18時(shí),18-1=17,18+1=19.
當(dāng)x=-18時(shí),-18-1=-19,-18+1=-17.
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時(shí),2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時(shí),2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個(gè)奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù).3.選出三種方法中最簡(jiǎn)單的一種.
練習(xí)
1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù).
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù).
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù).
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法.例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個(gè)位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個(gè)位數(shù)字.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為x-2,這個(gè)兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時(shí),x-2=2,10(x-2)+x=24.
答:這個(gè)兩位數(shù)是24.
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù).(35,53)
2.一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì).
(四)總結(jié),擴(kuò)展
1奇數(shù)的表示方法為 2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負(fù)數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個(gè)位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個(gè)位數(shù)字.
……
2.通過(guò)本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力,深刻體會(huì)方程的思想方法在解應(yīng)用問(wèn)題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
一元二次方程的應(yīng)用 篇13
一元二次方程的應(yīng)用(一)
一、素質(zhì)教育目標(biāo)
(-)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點(diǎn):通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù).
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個(gè)為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個(gè)方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個(gè)方程,得x1=18,x2=-18.
當(dāng)x=18時(shí),18-1=17,18+1=19.
當(dāng)x=-18時(shí),-18-1=-19,-18+1=-17.
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時(shí),2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時(shí),2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個(gè)奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù).3.選出三種方法中最簡(jiǎn)單的一種.
練習(xí)
1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù).
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù).
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù).
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法.例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個(gè)位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個(gè)位數(shù)字.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為x-2,這個(gè)兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時(shí),x-2=2,10(x-2)+x=24.
答:這個(gè)兩位數(shù)是24.
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù).(35,53)
2.一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì).
(四)總結(jié),擴(kuò)展
1奇數(shù)的表示方法為 2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負(fù)數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個(gè)位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個(gè)位數(shù)字.
……
2.通過(guò)本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力,深刻體會(huì)方程的思想方法在解應(yīng)用問(wèn)題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
一元二次方程的應(yīng)用(一)
一、素質(zhì)教育目標(biāo)
(-)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點(diǎn):通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù).
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個(gè)為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個(gè)方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個(gè)方程,得x1=18,x2=-18.
當(dāng)x=18時(shí),18-1=17,18+1=19.
當(dāng)x=-18時(shí),-18-1=-19,-18+1=-17.
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時(shí),2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時(shí),2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個(gè)奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù).3.選出三種方法中最簡(jiǎn)單的一種.
練習(xí)
1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù).
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù).
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù).
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法.例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個(gè)位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個(gè)位數(shù)字.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為x-2,這個(gè)兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時(shí),x-2=2,10(x-2)+x=24.
答:這個(gè)兩位數(shù)是24.
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù).(35,53)
2.一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì).
(四)總結(jié),擴(kuò)展
1奇數(shù)的表示方法為 2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負(fù)數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個(gè)位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個(gè)位數(shù)字.
……
2.通過(guò)本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力,深刻體會(huì)方程的思想方法在解應(yīng)用問(wèn)題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
一元二次方程的應(yīng)用 篇14
一、素質(zhì)教育目標(biāo)
(-)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點(diǎn):通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù).
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個(gè)為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個(gè)方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個(gè)方程,得x1=18,x2=-18.
當(dāng)x=18時(shí),18-1=17,18+1=19.
當(dāng)x=-18時(shí),-18-1=-19,-18+1=-17.
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個(gè)奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時(shí),2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時(shí),2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個(gè)奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù).3.選出三種方法中最簡(jiǎn)單的一種.
練習(xí)
1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù).
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù).
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù).
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法.例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個(gè)位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個(gè)位數(shù)字.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為x-2,這個(gè)兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時(shí),x-2=2,10(x-2)+x=24.
答:這個(gè)兩位數(shù)是24.
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù).(35,53)
2.一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì).
(四)總結(jié),擴(kuò)展
1奇數(shù)的表示方法為 2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負(fù)數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個(gè)位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個(gè)位數(shù)字.
……
2.通過(guò)本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進(jìn)一步提高分析問(wèn)題、解決問(wèn)題的能力,深刻體會(huì)方程的思想方法在解應(yīng)用問(wèn)題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
一元二次方程的應(yīng)用 篇15
第一課時(shí)
一、教學(xué)目標(biāo)
1.使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題。
2.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)提高分析問(wèn)題、解決問(wèn)題的能力。
3.通過(guò)列方程解應(yīng)用問(wèn)題,進(jìn)一步體會(huì)代數(shù)中方程的思想方法解應(yīng)用問(wèn)題的優(yōu)越性。
二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題。
2.教學(xué)難點(diǎn) :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系。
3.教學(xué)疑點(diǎn):學(xué)生對(duì)列一元二次方程解應(yīng)用問(wèn)題中檢驗(yàn)步驟的理解。
4.解決辦法:列方程解應(yīng)用題,就是先把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,然后由數(shù)學(xué)問(wèn)題的解決而獲得對(duì)實(shí)際問(wèn)題的解決。列方程解應(yīng)用題,最重要的是審題,審題是列方程的基礎(chǔ),而列方程是解題的關(guān)鍵,只有在透徹理解題意的基礎(chǔ)上,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確找出已知量與未知量之間的等量關(guān)系,正確地列出方程。
三、教學(xué)過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用問(wèn)題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答。
(2)兩個(gè)連續(xù)奇數(shù)的表示方法是,(n表示整數(shù))
2.例題講解
例1 兩個(gè)連續(xù)奇數(shù)的積是323,求這兩個(gè)數(shù)。
分析:(1)兩個(gè)連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法)a.設(shè)較小的奇數(shù)為x,則另一奇數(shù)為,b.設(shè)較小的奇數(shù)為,則另一奇數(shù)為;c.設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)。
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進(jìn)行比較、鑒別,選出最簡(jiǎn)單解法。
解法(一) 設(shè)較小奇數(shù)為x,另一個(gè)為,
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
由得,由得,
答:這兩個(gè)奇數(shù)是17,19或者-19,-17。
解法(二) 設(shè)較小的奇數(shù)為,則較大的奇數(shù)為。
據(jù)題意,得
整理后,得
解這個(gè)方程,得。
當(dāng)時(shí),
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;或者-19,-17。
解法(三) 設(shè)較小的奇數(shù)為,則另一個(gè)奇數(shù)為。
據(jù)題意,得
整理后,得
解得,,或。
當(dāng)時(shí),。
當(dāng)時(shí),。
答:兩個(gè)奇數(shù)分別為17,19;-19,-17。
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個(gè)問(wèn)題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負(fù)值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
3.選出三種方法中最簡(jiǎn)單的一種。
練習(xí)1.兩個(gè)連續(xù)整數(shù)的積是210,求這兩個(gè)數(shù)。
2.三個(gè)連續(xù)奇數(shù)的和是321,求這三個(gè)數(shù)。
3.已知兩個(gè)數(shù)的和是12,積為23,求這兩個(gè)數(shù)。
學(xué)生板書(shū),練習(xí),回答,評(píng)價(jià),深刻體會(huì)方程的思想方法。
例2 有一個(gè)兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個(gè)位數(shù)字小2,求這兩位數(shù)。
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)十位數(shù)字個(gè)位數(shù)字。
三位數(shù)百位數(shù)字十位數(shù)字個(gè)位數(shù)字。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為,這個(gè)兩位數(shù)是。
據(jù)題意,得,
整理,得,
解這個(gè)方程,得(不合題意,舍去)
當(dāng)時(shí),
答:這個(gè)兩位數(shù)是24。
以上分析,解答,教師引導(dǎo),板書(shū),學(xué)生回答,體會(huì),評(píng)價(jià)。
注意:在求得解之后,要進(jìn)行實(shí)際題意的檢驗(yàn)。
練習(xí)1 有一個(gè)兩位數(shù),它們的十位數(shù)字與個(gè)位數(shù)字之和為8,如果把十位數(shù)字與個(gè)位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來(lái)的兩位數(shù)就得1855,求原來(lái)的兩位數(shù)。(35)
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書(shū),評(píng)價(jià),體會(huì)。
四、布置作業(yè)
教材P42A 1、2
補(bǔ)充:一個(gè)兩位數(shù),其兩位數(shù)字的差為5,把個(gè)位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個(gè)兩位數(shù)。
五、板書(shū)設(shè)計(jì)
探究活動(dòng)
將進(jìn)貨單價(jià)為40元的商品按50元售出時(shí),能賣(mài)500個(gè),已知該商品每漲價(jià)1元時(shí),其銷(xiāo)售量就減少10個(gè),為了賺8000元利潤(rùn),售價(jià)應(yīng)定為多少,這時(shí)應(yīng)進(jìn)貨為多少個(gè)?
參考答案:
精析:此題屬于經(jīng)營(yíng)問(wèn)題.設(shè)商品單價(jià)為(50+)元,則每個(gè)商品得利潤(rùn)元,因每漲1元,其銷(xiāo)售量會(huì)減少10個(gè),則每個(gè)漲價(jià)元,其銷(xiāo)售量會(huì)減少10個(gè),故銷(xiāo)售量為(500)個(gè),為賺得8000元利潤(rùn),則應(yīng)有(500).故有=8000
當(dāng)時(shí),50+=60,500=400
當(dāng)時(shí),50+=80,500=200
所以,要想賺8000元,若售價(jià)為60元,則進(jìn)貨量應(yīng)為400個(gè),若售價(jià)為80元,則進(jìn)貨量應(yīng)為200個(gè).
一元二次方程的應(yīng)用 篇16
12.6 一元二次方程的應(yīng)用(三)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):學(xué)會(huì)用列方程的方法解決有關(guān)增長(zhǎng)率問(wèn)題.
2.教學(xué)難點(diǎn) :有關(guān)增長(zhǎng)率之間的數(shù)量關(guān)系.下列詞語(yǔ)的異同;增長(zhǎng),增長(zhǎng)了,增長(zhǎng)到;擴(kuò)大,擴(kuò)大到,擴(kuò)大了.
三、教學(xué)步驟
(一)明確目標(biāo).
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量.
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率.
(3)實(shí)際產(chǎn)量=原產(chǎn)量×(1+增長(zhǎng)率).
2.例1 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個(gè)月平均每月增長(zhǎng)的百分率是多少?
分析:設(shè)平均每月的增長(zhǎng)率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(噸).
解:設(shè)平均每月的增長(zhǎng)率為x,據(jù)題意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點(diǎn)撥、板書(shū),學(xué)生回答.
注意以下幾個(gè)問(wèn)題:
(1)為計(jì)算簡(jiǎn)便、直接求得,可以直接設(shè)增長(zhǎng)的百分率為x.
(2)認(rèn)真審題,弄清基數(shù),增長(zhǎng)了,增長(zhǎng)到等詞語(yǔ)的關(guān)系.
(3)用直接開(kāi)平方法做簡(jiǎn)單,不要將括號(hào)打開(kāi).
練習(xí)1.教材P.42中5.
學(xué)生分析題意,板書(shū),筆答,評(píng)價(jià).
練習(xí)2.若設(shè)每年平均增長(zhǎng)的百分?jǐn)?shù)為x,分別列出下面幾個(gè)問(wèn)題的方程.
(1)某工廠用二年時(shí)間把總產(chǎn)值增加到原來(lái)的b倍,求每年平均增長(zhǎng)的百分率.
(1+x)2=b(把原來(lái)的總產(chǎn)值看作是1.)
(2)某工廠用兩年時(shí)間把總產(chǎn)值由a萬(wàn)元增加到b萬(wàn)元,求每年平均增長(zhǎng)的百分?jǐn)?shù).
(a(1+x)2=b)
(3)某工廠用兩年時(shí)間把總產(chǎn)值增加了原來(lái)的b倍,求每年增長(zhǎng)的百分?jǐn)?shù).
((1+x)2=b+1把原來(lái)的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點(diǎn)撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來(lái)的產(chǎn)值是a,平均每次增長(zhǎng)的百分率為x,則增長(zhǎng)一次后的產(chǎn)值為a(1+x),增長(zhǎng)兩次后的產(chǎn)值為a(1+x)2 ,…………增長(zhǎng)n次后的產(chǎn)值為S=a(1+x)n.
規(guī)律的得出,使學(xué)生對(duì)此類(lèi)問(wèn)題能居高臨下,同時(shí)培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2 某產(chǎn)品原來(lái)每件600元,由于連續(xù)兩次降價(jià),現(xiàn)價(jià)為384元,如果兩個(gè)降價(jià)的百分?jǐn)?shù)相同,求每次降價(jià)百分之幾?
分析:設(shè)每次降價(jià)為x.
第一次降價(jià)后,每件為600-600x=600(1-x)(元).
第二次降價(jià)后,每件為600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:設(shè)每次降價(jià)為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價(jià)為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書(shū),筆答,評(píng)價(jià),對(duì)比,總結(jié).
引導(dǎo)學(xué)生對(duì)比“增長(zhǎng)”、“下降”的區(qū)別.如果設(shè)平均每次增長(zhǎng)或下降為x,則產(chǎn)值a經(jīng)過(guò)兩次增長(zhǎng)或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
(四)總結(jié)、擴(kuò)展
1.善于將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時(shí),注意巧算;注意方程兩根的取舍問(wèn)題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長(zhǎng)率.3年、4年……,n年,應(yīng)該說(shuō)按照規(guī)律我們可以列出方程,隨著知識(shí)的增加,我們也將會(huì)解這些方程.
四、布置作業(yè)
教材P.42中A8
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程應(yīng)用(三)
1.數(shù)量關(guān)系: 例1…… 例2……
(1)原產(chǎn)量+增產(chǎn)量=實(shí)際產(chǎn)量 分析:…… 分析……
(2)單位時(shí)間增產(chǎn)量=原產(chǎn)量×增長(zhǎng)率 解…… 解……
(3)實(shí)際產(chǎn)量=原產(chǎn)量(1+增長(zhǎng)率)
2.最后產(chǎn)值、基數(shù)、平均增長(zhǎng)率、時(shí)間
的基本關(guān)系:
M=m(1+x)n n為時(shí)間
M為最后產(chǎn)量,m為基數(shù),x為平均增長(zhǎng)率