《解決問題的策略》第二課時教學實錄及反思
這是義務教育課程標準實驗教科書蘇教版第十一冊第七單元《解決問題的策略》單元第二課時的教學內容.本單元選擇學生能夠接受的素材創設問題情境,通過讓學生主動經歷探索過程,幫助學生積累思想方法,發展解題策略.本課時選取的素材是類似與我國古代的傳統數學名題"雞兔同籠"問題,教學的目的是讓學生繼續感受替換的數學思想方法,積累解決問題的策略.在教學中,我始終都是著眼于幫助學生體會數學思想,積累數學方法,感受解題策略. 下面以一個教學片段的實錄來闡述自己對解決問題的策略的教學思考.實錄:
1,出示例題:全班42人去公園劃船,一共租用了10只船.每只大船坐5人,每只小船坐3人.租用的大船和小船各有幾人
(1)自己把題目讀一讀,你能找到那些數學信息,要我們解決什么問題.
(2)先自己想一想,你準備怎樣來解決這個問題 然后和小組里的同學交流一下,并動筆試一試你的策略是否有效.
2,組織交流.
師:下面我們一起來交流一下你的想法.
(1)生:我打算先湊一湊.算一算如果大船有1只,小船有9只,一共能坐多少人,再和42人比較一下相差多少人.
師:好,我們把你的意思用表格列出來.
大船只數
小船只數
總人數
和42人比較
1
9
1×5+3×9=32
少了10人
師:請大家想一想,這里的"少了10人"是什么意思
生1:在這10只船中,能坐船的人數比實際坐船的人數少了10人,
生2:也就是如果大船是1只,小船是9只時,就會有10人沒有坐到船.
師:是啊,還有10人沒有坐到船,說明我們湊的1只大船,9只小船不合理,哪種船太少了呢,可以怎樣調整呢
生:大船太少了,我想把大船改為3只.
師:如果大船改為3只,那么這時小船就是租了幾只,為什么
生:小船7只,因為題目中說大船,小船一共是10只,船的總只數是不變的.
師:好,我們一起來算一算,這時的總人數情況.
大船只數
小船只數
總人數
和42人比較
1
9
1×5+9×3=32
少了10人
3
7
3×5+3×7=36
少了6人
師:能分析一下,"少了6人",說明什么嗎,可以怎樣調整
生:"少了6人"說明還有6人沒有坐到船,大船還是太少.
師:你想怎樣調整呢
生:可以把大船改為5只,小船也改為5只.
師:好,我們繼續來算一算.
大船只數
小船只數
總人數
和42人比較
1
9
1×5+9×3=32
少了10人
3
7
3×5+3×7=36
少了6人
5
5
5×5+3×5=40
少了2人
師:看到"少了2人"你又想到什么呢
生1:大船還是太少,再調整為大船有6只,小船有4只.
圣2:大船肯定是6只.
師:能說說你是怎樣想的嗎
生2:一只大船比一只小船多坐2人,現在還有2人沒有坐到船,那么,把一只小船替換成一只大船,就可以多坐2人,所以,大船再多一只就夠了,所以大船肯定是6只,小船就是4只.
師:大家覺得他說得有道理嗎,我們可以計算驗證一下.
大船只數
小船只數
總人數
和42人比較
1
9
1×5+9×3=32
少了10人
3
7
3×5+3×7=36
少了6人
5
5
5×5+3×5=40
少了2人
6
4
5×6+3×4=42
正好
生3:我覺得不用這么湊,從第一次湊了1只大船,9只小船少了10人可以看出還有10人沒有坐到船,那么把一只小船替換成大船就可以多坐2人,10÷2=5只,說明要把5只小船替換成大船,所以大船就是6只.
師:說得多好呀,同學們能想明白嗎 剛才我們用先假設大船有1只,小船有9只,再用列表假設再調整的方法解決了這個問題,當然在調整的過程中,同學們也展開了深入的分析和思考,進行了合理的替換,有的同學還能通過大小船之間的關系,很快替換到最后的結果,非常了不起.回顧一下,在這個過程中,你是怎樣來思考的,運用哪些解決問題的策略呢
生:我們運用了列表的策略,替換的策略.
師:是的, 其實大家還用到一個重要的策略:假設的策略,在替換之前,大家先假設大船是1只,小船是9只,這就是假設.
生1:老師,我想直接假設大船5只,小船5只,可以嗎
其他學生(異口同聲地):當然可以.
生2:老師,我直接假設大船有6只,小船有4只,可以嗎
(全班大笑)
師(笑):當然也可以,如果你足夠幸運的話!
(2)師:同學們,剛才我們圍繞周想法展開了交流,通過列表,替換的方法解決了這個問題.你還有不同的想法嗎