乘法分配律(精選14篇)
乘法分配律 篇1
第一課時
教學目標:
1.使學生在解決實際問題的過程中發現并理解乘法分配律。
2.使學生在發現規律的過程中,發展比較、分析、抽象和概括的能力,增強用符號表達數學規律的意識,進一步體會數學與生活的聯系。
3.滲透從特殊到一般,再有一般到特殊這種認識事物的方法,使學生增強學習的興趣和自信。
教學重點、難點:
引導學生發現和理解乘法分配律。
教學資源:
小卡片、計算器、多媒體課件、實物投影儀。
教學過程:
一、創設情境
1.同學們,我們已經學過了哪些運算律?今天,我們繼續來探究發現有關乘法的新知識。 板:乘法
2.電腦出示例題圖:
二、活動嘗試
1.從題中你獲得了哪些信息?白菜老師要我們解決什么問題?
2.你們會列綜合算式解答嗎?(學生各自獨立計算)
3.交流反饋:誰來說說你是怎樣做的?你是怎樣想的?還有不同的解法嗎?
65×5+45×5 (65+45)×5
=325+225 =110×5
=550(元) =550(元)
答:一共要付550元。
三、探索規律
1.師:從這里我們又一次感受到,解決同一個問題,咱們思考的角度與方法可以是多種多樣的。這兩種解法算式雖然不一樣,但結果---(相等)。
2.那你會把這兩道算式寫成一個等式嗎?
板:(65+45)×5= 65×5+45×5
3.師:如果這位阿姨買了3件短袖衫和3條褲子,一共要付多少錢?怎么列式?
板:(32+45)×3 32×3+45×3
你能猜猜這兩個算式的結果有沒有什么關系?可以怎樣檢驗?
板:(32+45)×3=32×3+45×3
4.出示:(13+10)×2=?
你能口算出它的得數嗎?你是怎樣算的?誰能大膽猜想這個算式還可以怎樣計算?怎樣檢驗?
師:通過算一算可以檢驗算式是否正確。
5.請你小聲讀讀上面三個等式,有什么發現?
6.同學們,剛才你們用這里的三個等式得出了結論,你們所發現的這個結論也許只是一種偶然現象,是一種猜想而已。你們想不想自己出題來驗證?
板:猜想 驗證
7.學生任意地寫著算式,進行著計算。
8.匯報自己驗證的結果。
教師結合學生回答板書這些例子:……
9.問:這樣的等式能寫完嗎?你能用字母來表示這個規律嗎?
生異口同聲:(a+b)×c=a×c+b×c
10.師:用字母表示乘法中的這個規律,感覺怎樣——(稍等)簡潔、明了。這就是數學的美。
11.師:任何事物都可以從正反兩方面去看,請你們反著讀一讀字母式子。
12.師:同學們,你們發現的這個規律叫乘法分配律,用字母表示就是----(學生齊說),你們能用自己的語言描述這個規律嗎?請你們同桌互相說一說。(電腦出示乘法分配律)
13.師:乘法分配律是一個很重要的知識,運用廣泛,甚至到了中學也要用到,所以我們一定要學好。下面我們就來運用這個規律完成一些練習。 板:應用
四、應用規律
1.想想做做第1題。
讓學生填空后結合等式兩邊算式的特點說說自己的思考過程。
2.根據乘法分配律判斷下面各題是否正確,并說明理由。
(40+3)×25=40×25+3×25 ( )
15×9+45×9=(15+45)×9 ( )
25×21=25×20+25 ( )
40×50+50×90=40×(50+90) ( )
5×(20+6)=5×20+6 ( )
3.選擇。(請用手勢表示正確答案的編號。)
下面與 25×(4×8)相等的算式是( )。
①25×4+25×8; ②25×4×25×8; ③25×4×8
五、總結拓展
1.請同學們回憶一下,這節課學習了什么?我們是怎么學的?這種學習方法你們有沒有學會了?課后請你們用這種方法去研究一下除法中有沒有這樣的規律?
板書設計:
乘法分配律
猜想---驗證---歸納---應用
(65+45)×5 = 65×5+45×5
(32+45)×3 = 32×4+45×3
(13+10)×2=13×2+10×2
……
(a+b)×c = a×c+b×c
先和 先兩個積
乘法分配律 篇2
教學內容:
p36/例3(乘法分配律)
教學目的:
1.引導學生探究和理解乘法分配律。
2.培養學生根據具體情況,選擇算法的意識與能力,發展思維的靈活性。
3.使學生感受數學與現實生活的聯系,能用所學知識解決簡單的實際問題。
教學重點:
乘法分配律的意義和應用。
教學難點:
乘法分配律的反應用。
教學過程:
一、鋪墊孕埋伏
思考問題。
在學習乘法的運算定律時,我們觀察了一幅主題圖,有的同學還提出了一個問題:一共有多少名同學參加了這次植樹活動?
二、新授
小組討論,嘗試用不同的方法解決。
教師引導學生用多種方法解答。
學生匯報自己的解法。引導學生說明不同算法的理由。
(1)(4+2)×25
=6×25
=150(人)
4+2是每組一共有多少人,在乘25就算出25個小組一共有多少人了。
(2)4×25+2×25
=100+50
=150(人)
4×25表示25個小組一共有多少個人負責挖坑、種樹,2×25表示25個小組一共有多少人負責抬水、澆樹。再把它們加起來就是一共有多少人了。
小組合作:
(1)兩組算式有什么相同點?
(2)兩組算式有什么不同點?
(3)兩組算式有什么聯系?
匯報。
教師要根據學生的匯報,靈活地進行引導,總結出要點。
你還能舉出像這樣的幾組算式嗎?
學生舉例。
根據學生舉例板書。
到底我們舉的例子是不是符合這樣的規律呢?請學生驗證。
請學生用語言表述出發現的規律。
板書:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。這叫做乘法分配律。
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
你有什么好方法幫助我們大家記住乘法分配律?
簡記為:
和與一個數相乘=積相加
三、鞏固練習
p36/做一做
p38/5
在練習小結中,幫助學生記憶乘法分配律。
四、小結
學生匯報自己的收獲。
教師引導小結,相應完善板書。
板書設計:
乘法分配律
一共有多少名同學參加了這次植樹活動?
(1)(4+2)×25 (2)4×25+2×25
=6×25 =100+50
=150(人) =150(人)
(4+2)×25=4×25+2×25
┆(學生舉例)
(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
兩個數的和與一個數相乘,可以先把它們與這個
數分別相乘,再相加。這叫做乘法分配律。
課后小結:
乘法分配律 篇3
教學內容:教科書第68頁例5,第69頁“做一做”中的題目和練習十四的第l、2 題。 教學目的:使學生理解并掌握,培養學生的分析推理能力。
教具、學具準備:教師把下面復習中的口算寫在卡片上;在一張紙條上面5個白色的正方形和3個紅色的正方形,如:□□□□□■■■,共做4條。
教學過程 :
一、復習
教師出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,計算每一題時,第一個學生回答“先算什么”,第二個學生回答“再算什么”,第三個學生回答“接下來算什么”。
二、新課
1.教學例5。
教師讓學生擺正方形,先把5個白色正方形擺成一橫排,接著擺3個紅色正方形與白色正方形在同一行上,教師同時貼出一張畫有正方形的紙條,先只顯示5個白色的正方形,然后再顯示3個紅色的正方形。接著教師說明要擺4行這樣的正方形,邊說邊貼出另外3張畫著正方形的紙條。教師指著圖形提問:
“圖中一共有多少個正方形?你是怎樣想的?”先請一個學生回答.教師把學生所列的算式寫在黑板上。
“還有別的算法嗎?你是怎樣想的?”再請一個學生回答,如果這個學生說出另外一種算法,教師再把這個學生所說的算式也寫在黑板上。如:
”(5+3)×4 5×4+3×4
教師:第一個算式是先求出每一行有多少個正方形,再求4行一共有多少個正方形。
第二個算式是先求出白正方形和紅正方形各有多少個,再求出一共有多少個正方形。這兩個算式的計算方法雖然不同,但是都可以求出于共有多少個正方形。下面我們大家一齊來計算,看一看這兩個算式的得數怎樣。學生口算,教師板書。然后再提問:
“這兩個算式的計算結果怎樣?”
“這兩個算式的計算結果相等,說明這兩個算式有什么關系?”學生回答后,教師指出:這兩個算式的計算結果相等,我們就可以把它們用等號連起來,板書:
(5+3)×4=5×4+3×4
“等號左面的算式是什么意思?”(5與3的和乘以4。)
“等號右面的算式是什么意思?”(5與3先分別乘以4,然后再把兩個積相加。)
教師:這兩個算式相等,說明了5與3的和乘以4等于5與3先分別乘以4再相加。
教師:下面我們再看兩組算式,先看:(18+7)×6 18×6+7×6
“左面的算式是什么意思?”(18與7的和乘以6。)
“右面的算式是什么意思?”(18與7分別乘以6,再把兩個積相加)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(兩個積分別是108和42,它們的和等于150)
教師:左右兩個算式都等于150,所以這兩個算式相等,可以用等號把它連起來,教 師邊說邊在兩個算式中間畫一個等號。
“這兩個算式相等。說明18與7的和乘以6等于什么?”說明18與7的和乘以6等于18與7先分別乘以6再相加。)
教師:我們再來看兩個算式 20×(15+9) 20×15+20×9
“先來計算一下這兩個算式各等于多少?”
“兩個算式都等于多少?”
“這兩個算式相等,說明20乘以15與9的和等于什么?
2.進行抽象概括。
教師指著上面的算式提問:
“仔細觀察上面的三個等式,你看出了什么?先看等號左面的三個算式有什么相同的 地方?”多讓幾個學生說一說。(第一、二兩個等式都是兩個數的和乘以一個數;第三個等式是一個數乘以兩個彩的和。)
教師指出:兩個數的和乘以一個數或者一個數乘以兩個數的和,我們可以用一句話表示,就是兩個數的和與一個數相乘。
“再看等號右面的三個算式有什么相同的地方?:學生討論后,教師指出:都是先求兩個乘積,再把兩個積加起來。
“等號左面與等號右面相等是什么意思?”學生發言后,教師概括:上面三個等式等號左面分別與等號右面相等說明,兩個數的和與一個數相乘,等于這兩個數先分別同這個數相乘,再把兩個積加起來。我們把乘法運算的這個規律叫做。同時板書。讓學生看教科書第68頁下面的方框里的結語,全斑齊讀兩遍。
教師:如果用“a、b、c“表示三個數,可以寫成下面的形式:
(a+b)×c=a×c+b×c
“等號左面(a+b)×c表示什么意思?”(表示兩個數的和同一個數相乘)。
“等號右面“a×c+b×c表示什么意思?”(表示把兩個加數分別同這個數相乘;再把兩個積相加。)
三、鞏固練習
教師在黑板上寫算式:(200十3)×27,提問:
1.“這個算式中是哪兩個數的和乘以哪個數?”
“根據,這個算式等于哪兩個乘積的和?”
教師在黑板上再寫算式:185×27十15×27,提問:
“這個算式中是哪兩個數分別乘以哪一個數?”
“根據,這個算式等于哪兩個數的和乘以哪一個數?”
2.做第69頁“做一做”中的題目。
先讓學生讀題,再想一想每個方框里應該填什么數。
四、作業
練習十四的第1、2題。
乘法分配律 篇4
教學目標
1.使學生理解的意義.
2.掌握的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
的意義及應用.
教學難點
的反應用.
教具學具準備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用簡便方法計算.(說明根據什么簡算的)
25×63×4
3. 師生比賽,看誰算得又對又快.
20×5+5×80 (1250+125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入 :
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:).
2.教學例6:
(1)出示例6:演示課件出示例6 下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,如果用a、b、c表示3個數, 用字母怎樣表示?
根據練習學生從而得出: (a+b)×c=a×c+b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件出示例7 下載
(1)出示例7:102×43
啟發學生想:能否把算式改成的形式,然后應用運算定律進行簡算?
引導學生對比:(100+2)×43,102×(40+3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用可以使計算簡便.
教師板書:
(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37+9×63
=9×(37+63)
=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、+、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250+125)×8,老師就是應用的使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件出示練習 下載
1. 練習十四第1題.
根據運算定律在□里填上適當的數.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)與a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)與(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板書設計
乘法分配律 篇5
教學目標
1.使學生理解的意義.
2.掌握的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
的意義及應用.
教學難點
的反應用.
教具學具準備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用簡便方法計算.(說明根據什么簡算的)
25×63×4
3. 師生比賽,看誰算得又對又快.
20×5+5×80 (1250+125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入 :
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:).
2.教學例6:
(1)出示例6:演示課件出示例6 下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,如果用a、b、c表示3個數, 用字母怎樣表示?
根據練習學生從而得出: (a+b)×c=a×c+b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件出示例7 下載
(1)出示例7:102×43
啟發學生想:能否把算式改成的形式,然后應用運算定律進行簡算?
引導學生對比:(100+2)×43,102×(40+3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用可以使計算簡便.
教師板書:
(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37+9×63
=9×(37+63)
=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、+、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250+125)×8,老師就是應用的使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件出示練習 下載
1. 練習十四第1題.
根據運算定律在□里填上適當的數.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)與a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)與(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板書設計
乘法分配律 篇6
教學內容:
教科書例6、例7及“做一做”,練習十四。
(一)知識教學點
1.使學生理解乘法分配律的意義。
2,掌握乘法分配律的應用。
(二)能力訓練點
通過觀察、分析、比較,培養學生的分析、推理和概括能力。
(三)德育滲進點
通過乘法分配律的應用,激發學生的學習興趣。
(四)羹育滲遇點
使學生感悟到數學知識內在聯系的邏輯之美,提高審美意識。
指導學生觀察、分析、討論、實踐,使學生感知乘法分配律。運用已有經驗
(d識遷移類推,通過合作學習,學會知識。
1.教學重點:乘法分配律的意義及應用。
2.教學難點:乘法分配律的反應用。
小黑板(轉板)、口算卡片、投影儀、投影片、紅(白)方木塊。
(一)錨墊孕伏
1.口算:(卡片)
25× 17×4 125×24
引導學生說一說運用了什么運算定律,這樣計算有什么好處?
2.先口算,再把得數相同的兩個算式用等號連接起來。(投影片)
(6+4)×5 6×4+4×5
(二)探究新知
1.導人新課:
前面我們已經學習了乘法的交換律、結合律,并且知道應用這些定律可使
一些計算簡便。今天這節課,我們再學習乘法的分配律。(板書課題)
2.教學例5:
(1)出示例5: ·
(2)引導學生觀察、討論、交流。
(3)教師引導學生觀察兩種算式,發現了什么?使學生懂得:
①兩個算式相等。
②兩個算式可用等號連接。
學生答,教師板書:(18+7)×6=150
18×6+7×6二150
(]8+7)×6二18×6+7×6 .
(4)教師出示:20×(15+9)
20× 15+20×9=480
20×(15+9)二20×15+20×9
組織學生分組討論,使學生明確:每組中算式所表示的意義。
反饋練習:按題目要求,請你說出一個等式。(投影出示)
(——+——)×——=——×——+——×——
學生答,教師填寫投影。
(通過學生的觀察、分析、實踐,使學生初感乘法分配律的知識,填空題的發
散思維訓練,讓學生擁有足量的感性材料,使得學生對乘法分配律知識的獲捐
達到水到渠成。)
教師;像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
教師進一步引導學生觀察等號左右兩邊算式的規律性,使學生明確:
①兩個數的和同一個數相乘。(教師引導學生明確:“相乘”指不固定被乘
數和乘數的位置。)
②兩個加數分別同一個數相乘再把兩個積相加。
③等號左右兩邊兩個算式相等。
3.概括定律:
通過學生觀察比較,啟發學生用數學語言概括乘法分配律的內容。讓學生
結合板書理解乘法分配律的概念,然后再引導學生回答其內容,加以鞏固。
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4二——×4+——×4
(62+12)×3=——×——+——×——
教師:啟發學生用字母表示乘法分配律的內容并指名板演,提示學生3個
數可分別用o、b、c表示。然后,讓學生說明算式的意義。這時,教師再提醒學
生還有沒有別的寫法。通過教師引導學生答出a×b×c=a×(b×c)問學生根據是什么?(乘法交換律,或用相乘來解釋)
5.我們知道用乘法交換律和乘法結合律可以使一些計算比較簡便。同學
們觀察我們練習的乘法結合律,在運算上有什么特點?
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加
數分別同這個數相乘,再把兩個積相加比較簡便。
6.教學例7:
(1)出示例7: ·
102×43
=(100+2)×43
=4300+86
=4386
想:把102看成(100+2),再用43分別去乘100和2,可以用口算
用了乘法結合律。
教師說明:熟練后第二步可以不寫,畫上虛線。
(2)出示9×37+9×63
①組織同學討論。
②組織同學閱讀教科書第65頁。
③啟發學生明白了什么?
(乘法分配律的應用,學生有些經驗,再加上乘法交換律、結合律的學習,學
生知識遷移類推,通過合作學習,能夠自己學會新知。)
(三)鞏固發晨
1.練習十四第1題。
2.在橫線上填上適當的數。
(”(24+8)×125=一×一+一×一
(2)25×(20+4)=25×——+25×——
(3)45×9+55×9=(——+——)×——
(4)8×27+73×8=8×(——+——)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相
同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫。
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×5 24×5+24×8
(3)20×(17+15) 20×17+20×15
(4)(40+28)×5 40×5+28
(5)(10×125)×8 - 10×8+125× 8
(6)4×(30+25) 4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42十29)與下面的( )相等
①28×42+28×29 ②(28+42)×(28+29)
(2)與6×8—6×8相等的式子是( )
(3)與(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9
5.練習十四第4題,投影出示。
6,分組計算練習十四第3題。
(四)課堂小結
③28×42×29
今天學習了乘法分配律,知道了兩個數的和與一個數相乘,等于兩個數分
別與一個數相乘,再把兩個積相加。
練習十四第2題
乘法分配律 篇7
教學目標
1.使學生理解乘法分配律的意義.
2.把握乘法分配律的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
乘法分配律的意義及應用.
教學難點
乘法分配律的反應用.
教具學具預備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1. 口算.
(27 73)×8 40×9 40×1 14×(10 2) 10×6 10×4
2. 用簡便方法計算.(說明根據什么簡算的)
25×63×4
3. 師生比賽,看誰算得又對又快.
20×5 5×80 (1250 125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入:
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:乘法分配律).
2.教學例6:
(1)出示例6:演示課件“乘法分配律”出示例6下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做乘法分配律.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,假如用a、b、c表示3個數, 乘法分配律用字母怎樣表示?
根據練習學生從而得出: (a b)×c=a×c b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件“乘法分配律”出示例7下載
(1)出示例7:102×43
啟發學生想:能否把算式改成乘法分配律的形式,然后應用運算定律進行簡算?
引導學生對比:(100 2)×43,102×(40 3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用乘法分配律可以使計算簡便.
教師板書:
(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據乘法分配律,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37 9×63
=9×(37 63)
=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、 、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250 125)×8,老師就是應用的乘法分配律使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件“乘法分配律”出示練習 下載
1. 練習十四第1題.
根據運算定律在□里填上適當的數.
(43 25)×2=□×□ □×□
8×47 8×53=□×(□ □)
3×6 6×7=□×(□ □)
8×(7 6)=8×□ □×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×5232×(48+52)
(2)(24+8)×824×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×540×5+ 28
(5)(10×125)×810×8+125×8
(6)4×(30+25)4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的相等
①28×42+28×29②(28+42)×(28+29)③28×42×29
(2)與a×8-b×8相等的式于是
①(a+b)×8②(a-b)×(8+8)③(a-b)×8
(3)與(10+8+9)×5相等的式子是
①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了乘法分配律,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80 8)×2535×37 65×37
32×(200 3)38×29 38
板書設計
乘法分配律 篇8
教學目標
1.使學生理解的意義.
2.掌握的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
的意義及應用.
教學難點
的反應用.
教具學具準備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用簡便方法計算.(說明根據什么簡算的)
25×63×4
3. 師生比賽,看誰算得又對又快.
20×5+5×80 (1250+125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入 :
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:).
2.教學例6:
(1)出示例6:演示課件出示例6 下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,如果用a、b、c表示3個數, 用字母怎樣表示?
根據練習學生從而得出: (a+b)×c=a×c+b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件出示例7 下載
(1)出示例7:102×43
啟發學生想:能否把算式改成的形式,然后應用運算定律進行簡算?
引導學生對比:(100+2)×43,102×(40+3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用可以使計算簡便.
教師板書:
(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37+9×63
=9×(37+63)
=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、+、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250+125)×8,老師就是應用的使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件出示練習 下載
1. 練習十四第1題.
根據運算定律在□里填上適當的數.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)與a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)與(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板書設計
乘法分配律 篇9
教學目標
1.使學生理解的意義.
2.掌握的應用.
3.通過觀察、分析、比較,培養學生的分析、推理和概括能力.
教學重點
的意義及應用.
教學難點
的反應用.
教具學具準備
口算卡片、投影儀.
教學步驟
一、鋪墊孕伏
1. 口算.
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2. 用簡便方法計算.(說明根據什么簡算的)
25×63×4
3. 師生比賽,看誰算得又對又快.
20×5+5×80 (1250+125)×8
讓學生說明是怎樣算的?
二、探究新知
1.導入 :
剛才的比賽老師算得快,是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?這就是我們今天要研究的內容.(板書課題:).
2.教學例6:
(1)出示例6:演示課件出示例6 下載
(2)引導學生觀察每組的兩個算式.
(3)教師提問:從上面的例子你發現了什么規律?
(4)學生明確:每組中的兩個算式都可以用等號連接.
教師板書:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教師出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
學生分組討論:每組中算式所表示的意義.
(6)反饋練習:按題要求,請你說出一個等式.(投影出示)
(__+__)×__=__+__×
教師提問:像符合這種條件的式子還有許多,那么這些算式到底有什么規律呢?
引導學生觀察:等號左右兩邊算式的規律性
啟發學生回答:首先是等號左邊兩個數的和同一個數相乘.
其次是等號右邊兩個加數分別同一個數相乘再把兩個積相加.
最后是等號左右兩邊的兩個算式相等.
3.教師概括運算定律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變.這叫做.
4.反饋練習:
橫線上能填幾?為什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教師:為了簡便易記,如果用a、b、c表示3個數, 用字母怎樣表示?
根據練習學生從而得出: (a+b)×c=a×c+b×c
使學生明確:有的題兩個數的和同一個數相乘比較簡便,有的題把兩個加數分別同這個數相乘,再把兩個積相加比較簡便.
5.教學例7:演示課件出示例7 下載
(1)出示例7:102×43
啟發學生想:能否把算式改成的形式,然后應用運算定律進行簡算?
引導學生對比:(100+2)×43,102×(40+3)這兩種算式哪種比較簡便?
使學生明確:兩個數相乘,把其中一個比較接近整十、整百、整千的數改寫成一個整十、整百、整千的數與一個數的和,再應用可以使計算簡便.
教師板書:
(2)出示9×37+9×63
引導學生觀察:這類題目的結構形式是怎樣的?有什么特點?
教師提問:根據,可以把原式改寫成什么形式?
根據學生的回答教師板書:9×37+9×63
=9×(37+63)
=9×100
=900
學生討論:這樣算為什么簡便?
師生共同總結:①這類題目的結構形式的特點是式子的運算符號一般是×、+、×的形式,也就是兩個積的和.
②在兩個乘法式子中,有一個相同的因數,也就是兩個數的和要乘的那個數.
③另外兩個不同的因數,是兩個能湊成整十、整百、整千的加數.
(3)揭示教師算得快的奧秘
上課開始時,我們已經比賽看誰算得快,如(1250+125)×8,老師就是應用的使計算簡便.現在你們會了嗎?
三、鞏固發展 演示課件出示練習 下載
1. 練習十四第1題.
根據運算定律在□里填上適當的數.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在橫線上填上適當的數.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)題之前教師要提醒學生明確此類題,必須是兩個積里有相同的因數,才能把相同的因數提到括號外面,然后讓學生獨立填寫.
3.把相等的算式用等號連接起來:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
學生做后共同訂正,并討論(2)、(4)、(5)、(6)為什么不能用等號連接起來?
4.選擇題:
(1)28×(42+29)與下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)與a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)與(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.練習十四第4題,投影出示.
一輛鳳凰牌自行車420元,一輛永久牌自行車405元.現在各買三輛.買鳳凰車和永久車一共用多少元?
四、課堂小結
今天我們學習了,知道了兩個數的和與一個數相乘,等于兩個數分別與這個數相乘,再把兩個積相加.希望同學們在以后的計算中能夠靈活運用乘法的運算定律使一些計算簡便.
五、布置作業
練習十四第3題.
用簡便方法計算下面各題.
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
板書設計
乘法分配律 篇10
教學目標:
1.通過有步驟的觀察、猜測、比較、概括,引導學生自己建構乘法分配律的全過程。
2.幫助學生理解乘法分配律的意義,掌握其數的特點和結構形式,并學會用字母表示乘法分配律。從而培養學生的分析觀察能力,提高學生的抽象思維能力。
3.在數學活動中獲得成功的體驗,進一步增強對數學學習的興趣和信心,初步形成探究問題的意識和習慣。
教學重點:
理解和掌握乘法分配律的推導過程。
教學準備:
課件,卡片(課前發給學生)
教學過程:
一、擬定自學提綱 自主預習
1. 創設情境:(多媒體出示24頁情境圖)
教師引導:同學們,請認真觀察情境圖,你能得到哪些數學信息?能提出什么數學問題?
(學生可能提出 濟青高速公路全長大約多少千米?
相遇時大巴車比中巴車多行多少千米?)
(教師把這兩個問題板書在黑板上。)
教師引導:這節課,我們將通過研究一輛大巴車和一輛中巴車在濟青高速上相遇的問題繼續探索乘法運算的規律。
2. 出示學習目標:這節課的學習目標是:(多媒體出示)
(1)運用觀察、猜想、驗證、歸納的數學方法,通過自主解決上述問題,探索發現乘法分配律,會用自己的話表述,會用字母表示。
(2)樂于把自己學習的收獲、困惑、體會與大家分享,樂于與同學合作。
教師引導:有信心達到這兩個目標嗎?(有!)
老師的指導會對你們的學習有很大的幫助,請看自學指導
3. 出示自學指導(認真看課本第24頁到25頁第二個紅點前的內容,重點看圖上同學的對話。思考
(1)如何求濟青公路的全長,有幾種解法,如何列式計算。
(2)比較兩種解法的計算過程和結果,你有什么猜想?再舉幾個例子來驗證一下,你能得出什么結論?
(3)什么叫乘法分配律,如何用字母表示?
5分鐘后匯報自學成果,看誰能獨立用多種方法解答黑板上的三個問題,并能發現乘法運算的規律。)
4. 學生按自學指導自學,教師巡視,關注學困生。
二、匯報交流 評價質疑
調查學情:看完的同學請舉手!看會的請放下。
1.小組交流:學習中你有哪些收獲、困惑和體會,請在小組內交流一下。
2.班內匯報:師指小組選代表按順序匯報自學指導中的思考題,其余同學隨機質疑、補充。
課堂生成預設
(1)濟青高速公路全長大約多少千米?
教師追問:第一種算法是先算什么,再算什么?第二種算法呢?
預設一:先算兩輛車1小時共行多少千米,再算兩輛車2小時共行多少千米,就是濟青高速公路的全長;
預設二:先算大巴車2小時共行多少千米、中巴車2小時共行多少千米,再算兩輛車2時共行多少千米。就是濟青高速公路的全長。)
(2)相遇時大巴車比中巴車多行多少千米?
(110-90)×2
=20×2
=40(千米)
110×2-90×2
=220-180
=40(千米)
教師追問:你能說說兩種算式的意思么?
預設一:第一種算法是先求大巴車1小時比中巴車多行的路程,再求大巴車2小時比中巴車多行的路程;
預設二:第二種算法是先分別求出大巴車和中巴車2小時行的路程,再求大巴車比中巴車多行的路程。
(3)觀察、比較兩種算法的過程和結果,你有什么發現?
預設一:第一種算法是先加(或減)再乘;
預設二:第二種算法是先分別相乘再加(或減),但計算結果相同。
(4)據此,你有什么猜想?
預設:兩個數的和(或差)乘第三個數,等于這兩個數分別乘第三個數,再把所得的積相加(或相減)。
(5)怎樣驗證你的猜想呢?
(師用線段圖幫助學生理清思路)
學生觀察、匯報。重點引導學生從計算結果,算式的結構和計算方法上比較。
通過觀察,有何發現?引導學生回答
舉例驗證:(125+12)×8 = 125×8+12×8
(40-4)×25=40×25-4×25
(8+16)×125=8×125+16×125
(80-8)×125=80×125-8×125
(6)通過驗證,你能得出什么結論?
結論:兩個數的和(或差)乘第三個數,等于這兩個數分別乘第三個數,再把所得的積相加(或相減)。
教師總結:這是一個偉大的發現!這個規律叫做乘法分配律。
(板書課題)你會用字母表示這個規律嗎?
(用字母表示:(a± b) •c=a•c±b•c)
三、抽象概括 總結提升
1.通過以上研究,你得到了什么結論?
課堂預設
預設一:兩個數的和乘一個數,可以把它們分別乘這個數,再把所得的積相加,結果不變。
預設二:兩個數的差乘一個數,可以把它們分別乘這個數,再把所得的積相減,結果不變。
預設三:兩個數的和(或差)乘第三個數,等于這兩個數分別乘第三個數,再把所得的積相加(或相減)。
預設四:這個規律叫乘法分配律,可以用字母表示為
(a± b) •c=a•c±b•c
2.如果是多個數的和(或差)乘一個數,這個規律還存在嗎?你怎樣驗證你的猜想?
課堂預設
舉例驗證:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
教師總結:多個數的和(或差)乘一個數,可以把它們分別乘這個數,再把所得的積相加(或相減),結果不變。
設計意圖:將乘法分配律適當拓展
3.在記憶這個規律時,應該注意什么?
【設計意圖】幫助學生理解、記憶乘法分配律,避免常犯的錯誤。
課堂預設
預設一:括號里的每一個數都要乘括號外的數。
預設二:括號里的數必須是相加或相減,如果是相乘就不是乘法分配律。
預設三:這個規律還可以倒過來看。
教師追問:怎樣倒過來看?
預設:幾個數都乘同一個數,再相加或相減,可以先把它們相加或相減,所得的和或差再乘這個數,結果不變。
四、鞏固應用 拓展提高
教師引導:怎么樣?學會了嗎?想不想挑戰一下自己? 1.考一考(課件出示第26頁第2題)
(1) 指4名學困生板演,其余同做在練習本上。
(2) 展示不同答案:誰的答案和板演者不同?請到黑板前展示出來。
課堂預設:(以第一題為例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
2.議一議
(1)你認為誰的答案對,為什么?誰的答案不對,為什么?
(2)第一種答案是把括號里的兩個加數相乘了,不符合乘法分配律,所以錯了;第二種答案符合乘法分配律,所以是正確的。
(3)用同樣的方法評議其余3題。
(4)同桌互改
(5)統計錯題情況,讓小組代表說說錯誤原因。
(6)學生各自訂正錯題。
3.全課小結:你在本節課中有什么收獲?
課堂預設
預設一:我知道了什么是乘法分配律。
預設二:我又體驗了探索數學規律的一般方法——通過觀察發現問題——提出猜想——舉例驗證——得出結論。
預設三:我感受到我們山東省的交通真是便利,作為山東人我感到自豪!
五、當堂訓練
1.出示課本第26頁第3題
2.《新課堂》第17到第19頁信息窗2第1課時內容。
同學們,通過這節課的復習,你有什么收獲?對自己的表現還滿意嗎?談一談你的感受。
板書設計:
乘法的分配律
濟青高速公路全長大約多少千米? 相遇時大巴車比中巴車多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
驗證
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
結論:用字母表示:(a± b) •c=a•c±b•c)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
拓展:多個數的和(或差)乘一個數,可以把它們分別乘這個數,再把所得的積相加(或相減),結果不變。
乘法分配律 篇11
教學內容:教科書第64頁例6,第64頁“做一做”中的題目和練習十四的第1、2題。
教學目的:使學生理解并掌握乘法分配律,培養學生的分析推理能力。
教學重難點:乘法分配律
教具、學具準備:教師把下面復習中的口算寫在卡片上;在一張紙條上畫5個白色的正方形和3個紅色的正方形,如□□□□□■■■,共做4條。
教學過程 :
一、復習
教師出示口算卡片,如:(36+64)×8,20×5+50×2,60×10+10×10等,計算每一題時,第一個學生回答“先算什么”,第二個學生回答“再算什么”,第三個學生回答“接下來算什么”。
二、新課
1.教學例6。
教師讓學生擺正方形,先把5個白色正方形擺成一橫排,接著擺3個紅色正方形與白色正方形在同一行上,教師同時貼出一張畫有正方形的紙條,先只顯示5個白色的正方形,然后再顯示3個紅色的正方形。接著教師說明要擺4行這樣的正方形,邊說邊貼出另外3張畫著正方形的紙條。教師指著圖形提問:
“圖中一共有多少個正方形?你是怎樣想的?”先請一個學生回答,教師把學生所列的算式寫在黑板上。
“還有別的算法嗎?你是怎樣想的?”再請一個學生回答,如果這個學生說出另外一種算法,教師再把這個學生所說的算式也寫在黑板上。如:
(5十3)×4 5×4十3×4
教師:第一個算式是先求出每一行有多少個正方形,再求4行一共有多少個正方形; 第二個算式是先求出白正方形和紅正方形各有多少個,再求出一共有多少個正方形。這兩個算式的計算方法雖然不同,但是都可以求出一共有多少個正方形。下面我們大家一齊來計算,看一看這兩個算式的得數怎樣。學生口算,教師板書。然后再提問:
“這兩個算式的計算結果怎樣?”
“這兩個算式的計算結果相等,說明這兩個算式有什么關系?”學生回答后,教師指出:
這兩個算式的計算結果相等,我們就可以把它們用等號連起來,板書:
(5十3)×4=5×4十3×4
“等號左面的算式是什么意思?”(5與3的和乘以4。)
“等號右面的算式是什么意思?”(5與3先分別乘以4,然后再把兩個積相加。)
教師:這兩個算式相等,說明了5與3的和乘以4等于5與3先分別乘以4再相加。
教師:下面我們再看兩組算式,先看:(18十7)×6 18×6十7×6
“左面的算式是什么意思?”(18與7的和乘以6。)
“右面的算式是什么意思?”(18與7分別乘以6,再把兩個積相加。)
“算一算左面的算式等于什么?”(18加7是25,25乘以6是150。)
“算一算右面的算式等于什么?”(兩個積分別是108和42,它們的和等于150。)
教師:左右兩個算式都等于150,所以這兩個算式相等,可以用等號把它們連起來,教師邊說邊在兩個算式中間畫一個等號。
“這兩個算式相等,說明18與7的和乘以6等于什么?”(說明18與7的和乘以6等于18與7先分別乘以6再相加。)
教師:我們再來看兩個算式 20×(15十9) 20×15十20×9
“先來計算一下這兩個算式各等于多少?”
“兩個算式都等于多少?”
“這兩個算式相等,說明20乘以15與9的和等于什么?”
2.進行抽象概括。
教師指著上面的算式提問:
“仔細觀察上面的三個等式,你看出了什么?先看等號左面的三個算式有什么相同的地方?”多讓幾個學生說一說。(第一、二兩個等式都是兩個數的和乘以一個數,第三個等式是一個數乘以兩個數的和。)
教師指出:兩個數的和乘以一個數或者一個數乘以兩個數的和,我們可以用一句話表示,就是兩個數的和與一個數相乘。
“再看等號右面的三個算式有什么相同的地方?”學生討論后,教師指出:都是先求兩個乘積,再把兩個積加起來。
“等號左面與等號右面相等是什么意思?”學生發言后,教師概括:上面三個等式等號左面分別與等號右面相等說明,兩個數的和與一個數相乘,等于這兩個數先分別同這個數相乘,再把兩個積加起來。我們把乘法運算的這個規律叫做乘法分配律。同時板書“乘法分配律”。讓學生看教科書第64頁下面的方框里的結語,全班齊讀兩遍。
教師:如果用 表示三個數,乘法分配律可以寫成下面的形式:
(a+b) ×c=a×c+b×c
“等號左面(a+b) ×c表示什么意思?”(表示兩個數的和同一個數相乘。)
“等號右面a×c+b×c 表示什么意思?”(表示把兩個加數分別同這個數相乘,再把兩個積相加。)
三、鞏固練習
教師在黑板上寫算式:(200十3)×27,提問:
1.“這個算式中是哪兩個數的和乘以哪個數?”
“根據乘法分配律,這個算式等于哪兩個乘積的和?”
教師在黑板上再寫算式:185×27十15×27,提問:
“這個算式中是哪兩個數分別乘以哪一個數?”
“根據乘法分配律,這個算式等于哪兩個數的和乘以哪一個數?”
2.做第64頁“做一做”中的題目。
先讓學生讀題,再想一想每個方框里應該填什么數。
“在(32十25)×4中,兩個數的和指的是什么?同一個數相乘指的是哪個數?”
“根據乘法分配律這個算式應該等于哪兩個數分別同4相乘再相加?”
“第一小題的方框里應該填什么數?”(根據乘法分配律,32與25的和乘以4,應該等于32與25分別乘以4再相加,所以兩個方框里應該分別填32和25。)
“第二小題應該怎樣填?根據什么運算定律?”(根據乘法分配律,64與12的和乘以3,應該等于64與12分別乘以3再相加。)
四、作業
練習十四的第l、2題。
乘法分配律 篇12
教學內容:教科書第64頁例7,練習十四的第3一10題。
教學目的:使學生學會進行應用乘法分配律簡便計算,提高學生的邏輯思維能力。
教學難點 :應用乘法分配律簡便計算
教具準備:將復習中的題目寫在小黑板上。
教學過程 :
一、復習
教師出示試題:
1.(35+65)×37 2.35×37+65×37
3.85×(174+26) 4.85×174+85×26
5.(80+8)×25 6.80×25+8×25
7. 32×(200+3) 8.32×200+32×3
“根據乘法分配律,都有哪些算式可以用等號連接起來?為什么?”
教師:根據乘法分配律,第1個算式和第2個算練功的得數應該一樣,第3個算式和第4個算式的得數也應該一樣。下面大家一起來計算。第1、2、3組的同學的第1題和第3題,第4、5、6組的同學第2題和第4題。大家抓緊時間做,比一比看哪幾個組的同學算得快。
“哪幾組的同學做的快?想一想,為什么第1、2、3組的大部分同學都那么快就算出了得數?”多讓幾個學生說一說。
教師:第1題和第3題中,兩個數的和都是整百數,整百數乘以一個數當然是很方便的。而第2題和第4題都要先算出兩個乘積再相加,比較麻煩。
教師:下面還有兩組等式,大家再來計算一下,第1、2、3組做第5、7題,第4、5、6組做第6、8題。
“這次哪幾組的同學做得快?想一想,這次為什么第4、5、6組的大部分同學都做得快了?”
教師:第6題和第8題分別乘得的兩個積,都有整百數,計算比較方便。從上面的計算可以看出,應用乘法分配律可以使一些計算簡便。
二、新課
1.教學例7
(1) 教師出示例題:計算9×37+9×63。
教師:這道題是要計算兩上乘積的和。
“仔細看一看這道題里的兩上乘法計算中的因數有什么特點?”
(兩個乘法計算有相同的因數9,另外兩個因數是37和63,它們的和正好是100。)
“聯系上面的復習題,想一想這道題怎樣做才能使計算簡便呢?“(先把37和63加起來,是100,再同9相乘,得900。)
“這是應用了什么運算定律?”
教師,這道題告訴我們,有些題可以應用乘法分配律使計算簡便。再來看一看怎樣的計算才能應用乘法分配律使計算簡便呢?先讓學生說一說。
教師概況,首先,要計算的是要兩個乘積的和,兩個乘法計算要有一個相同的因數;另外兩個因數的和又是整百或是整十數,這樣的計算我們就可以應用乘法分配律使計算簡便。
(2)教師出示例題:102×43
教師:這道題是一個三位數乘以一個兩位數,我們可以用筆算進行計算,但是比較麻煩。
“想一想,這道題怎樣計算比較簡便,使我們能夠用口算就能算出得數呢?”(給學生留出思考時間。)
教師:從上面的復習題我們可以看出,如果兩個加數分別要乘以一個數,而這兩個加數中有一個整十數或整百數,就先把這兩個加數分別乘以那個因數再相加比較簡便。現在的題目是102乘以43,想一想,能不能把其中一個因數拆成兩個數的和,并且使其中一個加數是整百、整十數?多讓幾個學生發言。教師肯定學生的回答后。
板書:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面計算中的第二步根據是什么?”(乘法分配律)。
教師概括:兩個數相乘,如果其中一個因數可以拆成兩個數的和,并且其中一個加數是整百、整十數,這時應用乘法分配律可以使計算簡便。
三、課堂練習
做練習十四的題目。
1. 第3題,2. 讓學生口算。當計算101×57和45×102時,3. 提問:“你是怎樣做的?得多少?”
2、第4題,5. 先讓學生自己計算。核對時讓學生回答。
“如果按運算順序計算,應該先算什么?”
“怎樣計算簡便?根據是什么?”
第4小題,如果學生有困難,教題先把算式38×?=38。學生回答后教師把“38×?”中的“?”改為“1”。
“下面應該怎樣算呢?”讓每個學生先做在自己的練習本上,然后再請一個學生口述計算過程。
3、第7題,7. 先讓學生獨立做,8. 然后集體核對,9. 核對的要讓學生說一說是怎樣做的。當核對“26×3”時,10. 學生說出計算方法后,11. 再讓學生說一說計算過程。學生發言后,12. 教師說明:26乘以3可以寫作(20+6)×3,13. 根據乘法分配律等于20乘以3的積再加6乘以3的積,14. 這實際上是應用了乘法分配律。這就是說,15. 我們過去學過的乘法口算有些應用了乘法分配律。這道題中的第7小題應用乘法結合律比較簡便,16. 第4、6、8、9題應用乘法分配律比較簡便。
4、 第9題和第10題,18. 先讓學生獨立做,19. 核對時要讓學生說出每個算式的意義。
5.提前做完的學生可以做第l9*題。當學生想出一種算法后,還要引導學生想一想其它的做法。這道題的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作業
練習十四的第5、6、8題。
乘法分配律 篇13
探索與發現(三)乘法分配律(教案)
教學內容:北師大版小學數學四年級上冊,第48——49頁內容
目的要求:
1、經歷探索的過程,發現乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
教學重點:探索發現規律,體會理解乘法分配律。
教育點: 使學生通過探索發現規律,體會探索的樂趣,從而樂于探索。
教學準備:課件一套
教學過程
一、復習導入
1、口算: 25×4= 125×8 = 25×9×4= 18×25×4=
125×16= 75+25= 89×100= 268×56+256×44= 要求學生說出部分題的口算依據及簡算過程;最后一題,學生不會,師快速口算結果,形成懸念。
2、談話導入
上節課,經過同學們的探索,我們發現了乘法交換律和結合律律,并會應用這些定律進行簡便計算,今天咱們繼續探索,看能否發現乘法還有沒有其它規律。(板書:探索與發現 三)
二、探索新知
1、出示情景圖
師:這是工人師傅,為立新幼兒園廚房的某一墻面鑲嵌的瓷磚。
引導:
(1)先估算一下,一共貼了多少塊瓷磚?
(2)驗證估算的結果。
(3)回報驗證的方法和結果。
(4)比較算式及結果的異同。
2、師舉例讓學生驗證是不是也有其特征。(40+4)×25和40×25+4×25)
3、觀察討論算式的特點。
計算后,觀察比較:
師提問:這兩個算式的左邊、右邊有什么共同特點?每個算式的左右兩邊有什么特點?兩邊的結果怎樣?
學生可能回答:
(1)兩個算式 :左邊都是三個數,并且是兩個數先加,再和另一個數相成;
右邊都是兩邊相乘,中間相加,并且都乘以同一個乘數。 (2)每個算式 :左邊是兩個數的和與一個數相乘;
右邊是這兩個加數都與這個數相乘,再把積相加。
(3)結果:左右兩邊的結果相同
4、學生舉例驗證。舉例后交流,注意:舉例是否符合要求;交流不同算式的共同特點。
5、要求學生用字母表示:(a + b)×c = a×c + b×c
這叫做乘法分配律
( 板書:——乘法分配律)
6、尋找簡算原因:學習乘法結合律和交換律可以使計算簡便,那么學習了乘法分配律能否簡便,比較上面兩個算式,看哪邊的計算簡便,為什么?
7、試一試
利用乘法分配律,計算下列各題
(80+4)×25 34×72+34×28
(做后說做題依據及為什么這樣簡便?)
三、課堂總結
談收獲。這節課,通過探索你發現了什么?乘法分配律有什么特點?在什么情況下,怎樣使計算簡便?比較乘法結合律與分配律的異同。
四、練一練
1、判斷
(1) (20 + 4)×25 =20 ×4 + 4 ( )
(2) 35×(2 + 20)=35×2×20 ( )
(3) (80 + 4)×125 = 80×125 + 4×125 ( )
2、填一填
(1)(10+7)×6=□×6+ □ ×6 (2)8×(125+9)=8× □ +8×□
(3)7×48+7×52=□× (□+□) (4)25× (4+8)=□× □+□×□
五、六、拓展
思考、討論:
(1)68×101= (2)98×99 + 98 = (3)189×98 - 89×98=
(討論后,下節課向老師匯報,不明白的下節課一同研究)
板書:
探索與發現(三)
——乘法分配律
(6 + 4)×9 6×9 + 4×9
= 10×9 = 54 + 36
= 90 = 9
(6 + 4)×9 = 6×9 + 4×9
學生舉例: (1)
(2)
(3)
字母表示:(a + b)×c = a×c + b ×c
這叫做乘法分配律
教學內容:北師大版小學數學四年級上冊,第48——49頁內容
目的要求:
1、經歷探索的過程,發現乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
教學重點:探索發現規律,體會理解乘法分配律。
教育點: 使學生通過探索發現規律,體會探索的樂趣,從而樂于探索。
教學思路:
本活動的探索過程與上節課基本相同,也是在活動中發現問題、提出假設、舉例驗證、建立模型。所以,教學的重點仍應放在探索過程的指導上。
本課首先出示口算題,為新授作準備,最后一題,形成懸念,激發學習興趣;接著通過出示情景圖后,先讓學生估一估貼了多少塊瓷磚,使學生初步形成印象,也是對前面所學估算的鞏固和應用,接著讓學生用自己的方法驗證估算的結果,學生通過驗證過程,從中發現不同的方法可結果是一致的。那么這個發現是否適用不同的數據呢?接著再師生舉例驗證。驗證時,注意指導學生觀察算式的特點,學生獨立舉例后,全班交流,抽象概括出乘法分配律及字母表示的方法。
練習題的設計:
試一試、練一練這兩題是基本練習,目的是為了加深理解乘法分配律,通過練習進一步體會運算定律,培養學生的簡算意識。拓展題是內容的加深,也是下節課研究的內容。以書本練習為主,盡量淡化不必要的技巧訓練。
乘法分配律 篇14
課題五:乘法分配律的應用
教學內容:教科書第64頁例7,練習十四的第3一10題。
教學目的:使學生學會進行應用乘法分配律簡便計算,提高學生的邏輯思維能力。
教學難點 :應用乘法分配律簡便計算
教具準備:將復習中的題目寫在小黑板上。
教學過程 :
一、復習
教師出示試題:
1.(35+65)×37 2.35×37+65×37
3.85×(174+26) 4.85×174+85×26
5.(80+8)×25 6.80×25+8×25
7. 32×(200+3) 8.32×200+32×3
“根據乘法分配律,都有哪些算式可以用等號連接起來?為什么?”
教師:根據乘法分配律,第1個算式和第2個算練功的得數應該一樣,第3個算式和第4個算式的得數也應該一樣。下面大家一起來計算。第1、2、3組的同學的第1題和第3題,第4、5、6組的同學第2題和第4題。大家抓緊時間做,比一比看哪幾個組的同學算得快。
“哪幾組的同學做的快?想一想,為什么第1、2、3組的大部分同學都那么快就算出了得數?”多讓幾個學生說一說。
教師:第1題和第3題中,兩個數的和都是整百數,整百數乘以一個數當然是很方便的。而第2題和第4題都要先算出兩個乘積再相加,比較麻煩。
教師:下面還有兩組等式,大家再來計算一下,第1、2、3組做第5、7題,第4、5、6組做第6、8題。
“這次哪幾組的同學做得快?想一想,這次為什么第4、5、6組的大部分同學都做得快了?”
教師:第6題和第8題分別乘得的兩個積,都有整百數,計算比較方便。從上面的計算可以看出,應用乘法分配律可以使一些計算簡便。
二、新課
1.教學例7
(1) 教師出示例題:計算9×37+9×63。
教師:這道題是要計算兩上乘積的和。
“仔細看一看這道題里的兩上乘法計算中的因數有什么特點?”
(兩個乘法計算有相同的因數9,另外兩個因數是37和63,它們的和正好是100。)
“聯系上面的復習題,想一想這道題怎樣做才能使計算簡便呢?“(先把37和63加起來,是100,再同9相乘,得900。)
“這是應用了什么運算定律?”
教師,這道題告訴我們,有些題可以應用乘法分配律使計算簡便。再來看一看怎樣的計算才能應用乘法分配律使計算簡便呢?先讓學生說一說。
教師概況,首先,要計算的是要兩個乘積的和,兩個乘法計算要有一個相同的因數;另外兩個因數的和又是整百或是整十數,這樣的計算我們就可以應用乘法分配律使計算簡便。
(2)教師出示例題:102×43
教師:這道題是一個三位數乘以一個兩位數,我們可以用筆算進行計算,但是比較麻煩。
“想一想,這道題怎樣計算比較簡便,使我們能夠用口算就能算出得數呢?”(給學生留出思考時間。)
教師:從上面的復習題我們可以看出,如果兩個加數分別要乘以一個數,而這兩個加數中有一個整十數或整百數,就先把這兩個加數分別乘以那個因數再相加比較簡便。現在的題目是102乘以43,想一想,能不能把其中一個因數拆成兩個數的和,并且使其中一個加數是整百、整十數?多讓幾個學生發言。教師肯定學生的回答后。
板書:102×43
=(100+2)×43
=100×43+2×43
=4386
“上面計算中的第二步根據是什么?”(乘法分配律)。
教師概括:兩個數相乘,如果其中一個因數可以拆成兩個數的和,并且其中一個加數是整百、整十數,這時應用乘法分配律可以使計算簡便。
三、課堂練習
做練習十四的題目。
1. 第3題,2. 讓學生口算。當計算101×57和45×102時,3. 提問:“你是怎樣做的?得多少?”
2、第4題,5. 先讓學生自己計算。核對時讓學生回答。
“如果按運算順序計算,應該先算什么?”
“怎樣計算簡便?根據是什么?”
第4小題,如果學生有困難,教題先把算式38×?=38。學生回答后教師把“38×?”中的“?”改為“1”。
“下面應該怎樣算呢?”讓每個學生先做在自己的練習本上,然后再請一個學生口述計算過程。
3、第7題,7. 先讓學生獨立做,8. 然后集體核對,9. 核對的要讓學生說一說是怎樣做的。當核對“26×3”時,10. 學生說出計算方法后,11. 再讓學生說一說計算過程。學生發言后,12. 教師說明:26乘以3可以寫作(20+6)×3,13. 根據乘法分配律等于20乘以3的積再加6乘以3的積,14. 這實際上是應用了乘法分配律。這就是說,15. 我們過去學過的乘法口算有些應用了乘法分配律。這道題中的第7小題應用乘法結合律比較簡便,16. 第4、6、8、9題應用乘法分配律比較簡便。
4、 第9題和第10題,18. 先讓學生獨立做,19. 核對時要讓學生說出每個算式的意義。
5.提前做完的學生可以做第l9*題。當學生想出一種算法后,還要引導學生想一想其它的做法。這道題的做法有:(80—30)×110一30×110;
(80—30—30)×110;
(80—30×2)×110。
四、作業
練習十四的第5、6、8題。