北師大五上《點陣中的規(guī)律》教學(xué)實錄
教學(xué)內(nèi)容:北師大版小學(xué)數(shù)學(xué)五年級上冊第82——83頁的內(nèi)容。一、談話引入
師:從小我們就學(xué)數(shù)數(shù)、用數(shù)字,那么對于數(shù)字的發(fā)明和發(fā)展過程,你們都哪些了解?(學(xué)生交流課前搜集的相關(guān)信息)
生1:古時候人們用石子來計數(shù),比如打一只兔子就擺一塊石子。
生2:還有用繩子打結(jié)的,有幾個人就打幾個結(jié)。
生3:我知道我們現(xiàn)在用的數(shù)字是印度人發(fā)明的,從阿拉伯傳到我國的,所以叫阿拉伯?dāng)?shù)字。
……
師:大家了解的信息真不少!阿拉伯?dāng)?shù)字的發(fā)明,使我們的記錄和計算更加方便,但是在表現(xiàn)數(shù)字的特征方面,有時候圖形會更加直觀。今天老師請來了一位圖形朋友——點(老師在黑板上畫點),看到這個點,你能快速地想到哪個數(shù)字?
生齊:1。
師:不要小看了這個小小的點,早在2000多年前,古希臘的數(shù)學(xué)家們就是從這樣一個小小的點開始研究,發(fā)現(xiàn)了由許多個這樣的點組成的圖形中的規(guī)律,還給這些圖形取了一個好聽的名字,叫點陣。同學(xué)們想不想過一把當(dāng)數(shù)學(xué)家的癮,自己來尋找這些規(guī)律?
生齊:想。
師:今天,我們就一起來探究點陣中隱含的規(guī)律。(板書課題:點陣中的規(guī)律)
二、探究正方形點陣中的規(guī)律
1、探究一組正方形點陣的規(guī)律。
師:我們一起來看看數(shù)學(xué)家們當(dāng)年研究的點陣圖,邊看邊說出各個點陣的點子數(shù)。
(依次出示前四個正方形點陣圖,并逐步引導(dǎo)學(xué)生想像、猜測:下一個點陣圖會是什么樣子呢?)
生:第一個是1個點;第二個是4個點;
師:在心里想第三個、第四個點陣圖是什么樣子。(示圖)與你的想像一樣嗎?
生1:一樣。就是9個點。
生2:我知道第四個點陣有16個點,肯定是的。
(隨著點陣圖的依次出現(xiàn),學(xué)生的思維逐漸活躍,當(dāng)?shù)谌齻點陣圖出現(xiàn)的時候,學(xué)生不用數(shù),已經(jīng)忍不住地說出了點數(shù)。說明學(xué)生已經(jīng)發(fā)現(xiàn)了這組正方形點陣中的規(guī)律。但這時,教師沒有急于讓學(xué)生發(fā)表自己的看法,而是給學(xué)生留出了完善自己想法的時間,同時也暗示學(xué)生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應(yīng)該有耐心地繼續(xù)自己的觀察活動。)
師:除了能說出各個點陣的點數(shù)之外,仔細觀察點陣圖:你們還有什么其它的發(fā)現(xiàn)?
生1:第一個點陣是1個點,其余的都是正方形的。
生2:我發(fā)現(xiàn)從第一個圖開始點子數(shù)分別是加3、加5、加7。
生3:我發(fā)現(xiàn)它們的點子數(shù)能寫成1×1、2×2、3×3、4×4。
師:你們真了不起!這種形狀的點陣就是正方形點陣,大家不但用數(shù)字表示每個點陣的點數(shù),還能用算式來表示這組點陣的規(guī)律。根據(jù)剛才發(fā)現(xiàn)的規(guī)律,想一想:第五個點陣是什么樣子呢?自己畫出來,并用算式表示點數(shù)。
(學(xué)生活動:獨立畫出第五個5×5的點陣圖,全班交流。)
師:照這樣的規(guī)律繼續(xù)畫下去,第9個點陣的點數(shù)如何用算式來表示?第100個呢?第n個呢?在小組內(nèi)交流一下。
生:第九個點陣表示為9×9;
第100個點陣表示為100×100;
第n個點陣就表示為n×n。
(結(jié)合發(fā)現(xiàn)的規(guī)律,引導(dǎo)學(xué)生逐步完善自己的想法,建立總結(jié)正方形點陣規(guī)律的模型。)
師:那么你們覺得每個正方形點陣的點子總數(shù)與什么有關(guān)系?在小組內(nèi)討論交流。
生1:點子總數(shù)與正方形點陣每一排的點子數(shù)有關(guān)系。
生2:就是邊長乘邊長。
生3:還與是第幾個有關(guān)系,第一個就是1×1,第二個就是2×2,第三個就是3×3,一直這樣數(shù)下去。
(學(xué)會用簡單的語言表述自己的想法,使得初步的形象感知得到提升)