等式第一課時(通用4篇)
等式第一課時 篇1
《等式》第一課時教學設計
課 題
《等式》
課時
第一課時
課 型
數學
修改意見
教學目標
1、通過演示天平保持平衡的幾種變換情況,讓學生初步認識等式的基本性質,感受等式的一條基
本性質:等式的兩邊同時加上或減去相等的數,等式不變。
2、利用觀察天平保持平衡所發現的規律能直接判斷天平變化后能否保持平衡。3、培養學生觀察與概括、比較與分析的能力。
教學重點
理解等式的意義
教學難點
能從實際情境中找出等量并寫出等式。
學情分析
一、學習習慣不佳,無合理的學習計劃,不會合理安排時間;學習的自覺性不夠,作業不能很好完成甚至有偷工減料的情況,學習任務只是局限于書面作業,不會自學,課程難度增加以后,學生的方法沒能及時跟上。
二、針對以上所存在的問題,改進課堂教學方式,讓師生之間的課堂活動形式更加多樣化,與問題學生多談心,多交流,幫助他們想辦法,解決學習上存在的問題,讓他們看到努力之后的結果。
作為一名年輕教師,還有很多需要學習和探索的地方,尤其是在個人專業及課堂教學水平方面,都比較稚嫩。但我相信只要多學習,多投入,多努力,改進方法,一定能有較好的收獲。
學法指導
數學的學習指導應首先指導學生從“聽、讀、寫、思”入手,然后知道學生在“說、看、練、記”上加強。
教 學 過 程
教學內容
教師活動
學生活動
效果預測(可能出現的問題)
修改意見
一、探索發現
二、合作交流
三、鞏固概念
四、解釋應用
五、拓展知識
1、六一兒童節又快到了。某小學的同學們又開始準備文娛節目了。五年級同學準備演云南
佤族的《木鼓舞》,一起來看看。
2、你都知道了哪些數學信息?
1要表示男演員的人數,可以怎樣表示?(板書40人)
2、還能用其他的方式表示男演員的人數嗎?(板書:(55-15)人)
3、同學們真會動腦筋,用總人數去掉女演員的人數就是男演員的人數。
4、請觀察,(指板書)現在我們用了哪些方法可以表示"男演員的人數"?
同桌交流。抽生匯報。
5、那它們的大小怎樣?
小結:一個量可以直接表示出來,也可以通過另外的量間接表示出來,這里的40人和(55-15)
人都表示的是男演員的人數。
6、數學上把表示同一個意思而形式上不同的量或大小相等的兩個量稱為同量或等量。表示等量的數或式子也可以用等號連接起來。在40和(55-15)之間加上等號,這樣的式子數學上就稱為等式。(板書:添等號)
板書:等式的認識。
1、課件出示:天平的左邊放ag的香蕉和bg的香梨,天平的右邊放cg的蘋果,天平平衡。
2、天平平衡,說明什么?
3、所以,可以用等式表示它們的關系。(板書:a+b=c)
4、你能寫出"女演員數"和"總人數"的不同表示方法嗎?動筆試一試。
1、剛才,大家知道了等量以及表示等量的式子叫做等式。下面這段話中也有一些等量,一起來找找,然后再寫出等式,看誰寫的等式多。
信息:在《木鼓舞》的演出中,需要把55名同學平均分成5個組來變換隊形,讓每組8名男同學,3名女同學。你能寫出哪些等式?
學生獨立思考并完成,小組交流并匯報。
①總人數=每組人數×組數55=(8+3)×5
②每組人數=總人數÷組數8+3=55÷5
③組數=總人數÷每組人數5=55÷(8+3)
④每組人數=男同學人數+女同學人數11=8+3
1、下面這些題目大家能夠完成嗎?
1.判斷下面哪些是等式。
35-15=20 16+x=18 m=4n
8x+4b 5y=15 b+a>c
2.你能從下列信息中找出等量關系嗎?請用等式表示出來。
(1)爸爸與兒子年齡的和是x歲,爸爸的年齡為a歲,兒子的年齡為b歲,爸爸比兒子大30歲。
(2)水果店有蘋果1200箱,橘子3600箱,香蕉1800箱。橘子是蘋果的3倍,又是香蕉的2倍。
1、觀賞
2、回答:五年級共有55名學生,男演員40名,女演員15名。
1、可以用40表示。
2、小組討論
結果:我們還可以用(55-15)人表示男演員的人數。
3、同桌交流。
4、回答:男演員的人數可以用40人表示,還可以用(55-15)人表示。
5、回答:大小相等。
2、說明左右兩邊的質量相同。
4、女演員數=總人數-男演員數15=55-40
4、總人數=男演員數+女演員數55=40+15
指導學生閱讀數學書第89頁,并進行勾畫。
像40=55-15,a+b=c,s=a2……這些表示相等關系的式子都是等式。
1、學生獨立完成。
1.學生獨立完成,集體糾正。
。
板書設計
參考書目及
推薦資料
等式第一課時 篇2
一、教材分析(說教材):
1、教材所處的地位和作用:
本節內容在全書及章節的地位是:《一元一次不等式、一元一次方程、一次函數》是蘇科版八下第七章第七節內容。在此之前,學生已學習了一元一次不等式、一元一次方程、一次函數基礎上,這為過渡到本節的學習起著鋪墊作用。本節內容在初中數學學習階段中,占據重要的地位,以及為其他學科和今后高中數學學習打下基礎。
2、教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)、知識目標: 認識并理解一元一次不等式、一元一次方程、一次函數的內在聯系及在解決問題時的不同作用。
(2)、過程與方法 通過用一元一次不等式、一元一次方程、一次函數解決問題,培養學生用聯系變化的觀點看問題的意識及數形結合的解題能力。
(3)情感、態度與價值觀
通過對解決實際問題的教學,引導學生從現實生活的經歷與體驗出發,激發學生對數學問題的興趣,使學生了解數學知識的功能與價值,形成主動學習的態度,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
本課中一元一次不等式、一元一次方程、一次函數的內在聯系是重點,靈活使用一元一次不等式、一元一次方程、一次函數解決實際問題是本課的難點,
下面,為了講清重難點,使學生能達到本節課設定的教學目標,我再從教法和學法上談談:
二、教學策略:
教法:據本節課教學內容和八年級學生的年齡、心理特點及目標教學的要求,本節課采用引導探究法;讓學生以觀察實例為基礎,用歸納的方法形成概念,把教學過程轉化為學生觀察、發現、探究的過程,再現知識的“發生”和“發現”及“形成”的過程,讓學生的知識形成網狀結構,使知識能相互交融,培養學生觸類旁通的能力。
學法:建構主義教學構想的核心思想是:通過問題的解決來學習。根據本節課的特點,采用自主探究、合作交流的探究式學習方法。
三、學情分析:(說學法)
1 、學生特點分析:
中學生心理學研究指出,初中階段是智力發展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發展,觀察能力、記憶能力和想象能力也隨著迅速發展。從年齡特點來看,初中學生好動、好奇、好表現,抓住學生特點,積極采用形象生動、形式多樣的教學方法和學生廣泛的、積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上,青少年好動,注意力易分散,愛發表見解,希望得到老師的表揚,所以在教學中應抓住學生這一生理特點,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終集中在課堂上;另一方面要創造條件和機會,讓學生發表見解,發揮學生學習的主動性。
2、知識障礙上:
⑴知識掌握上,學生原有的知識一元一次不等式、一元一次方程、一次函數,許多學生出現知識遺忘,所以應全面系統對學生的自由討論加以指導,引導學生如何研究一次不等式、一元一次方程、一次函數的內在聯系,共同揭示“等與不等”這對矛盾的雙方,在一定的條件下是可以轉化,從而使學生更深刻地理解等與不等的辨證關系。
(2)學習本節課的知識障礙是一次不等式、一元一次方程、一次函數的內在聯系
學生不易理解,所以教學中教師應予以簡單明白、深入淺出的分析。
3、動機和興趣上:
明確的學習目的。教師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
最后我來具體談一談這一堂課的教學過程:
四、 教學程序及設想:
1、由“彈簧掛物問題”導入
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。
在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。在本問題中使學生感受到一元一次不等式、一元一次方程、一次函數的內在聯系。
2、導疑:得出本課新的知識點是:一元一次不等式、一元一次方程、一次函數的內在聯系。
3、導研:講解例題。我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于發展學生的思維能力。在題中:引導學生圍撓一元一次不等式、一元一次方程、一次函數的內在聯系展開從多個角度進行思考。
4、導練:課后練習 使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、導評:總結結論,強化認識。知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
7、板書。
8、布置作業。針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。
教學程序:
(一):課堂結構:導入、導疑、導研、導評、導練、布置作業等幾部分。
(二):教學簡要過程:
1:復習提問:
2:導入講授新課:
3:課堂練習:
4:新課鞏固:
5:作業布置
五:作業布置:
等式第一課時 篇3
我今天說課的內容是浙教版數學八年級上冊第五章第3節《一元一次不等式》的第2課時。下面我從教材分析、教學方法和教學過程等幾方面來談談我對本節課的理解和設計。
一、教材分析
(一)教材的地位與作用
本節課是學生在學習了一元一次不等式及其解的概念,解簡單的一元一次不等式的基礎上,對解一元一次不等式的進一步深入和拓展;另一方面,又為學習不等式的應用、函數等知識奠定了基礎。鑒于這種認識,我認為本節課不僅有著廣泛的應用,而且起著承上啟下的作用。
(二)教學目標
知識與能力目標:掌握解一元一次不等式的一般步驟;會運用解一元一次不等式的基本步驟解一元一次不等式。
過程與方法目標:通過學生的觀察、獨立思考等過程培養學生歸納概括的能力。
情感與態度目標:通過獲得用數學知識解決實際問題的成功體驗,增強學生學習的自信心。
(三)教學重點難點
基于教學目標,我認為本節課的重點是:運用解一元一次不等式的一般步驟解一元一次不等式。
由于例2的步驟較多,容易發生錯誤,是為本節課的難點。
二、教學方法
我認為在教學中,要善于調動學生的學習積極性,關注學生的學習過程。本節課我采用啟發式,講練結合的教學方法,讓學生手腦并用,合作交流,自主探究。
三、教學過程
為了整體把握教材,構建高效課堂,我設計科一下流程:
復習引入—探究新知—鞏固練習拓展新知—目標檢測—歸納小結—作業布置,總共7個環節。
(一)復習引入
課件出示:解下列不等式:(1)3-3x>2-4x;(2)3+3x≤4x+8。這兩道題是上節課學過的知識,我估計學生能夠解決。于是我給學生一定時間讓他們自行完成,同時請兩位學生上臺板演。對照學生的解題過程,教師提問:“解這樣的不等式的基本步驟是什么?根據學生的回答,教師及時板書:移項、合并同類項、兩邊同除以未知數前面的系數。(注:遇負數,不等號的方向改變,與方程的不同之處)現在再看以下兩道題:
1.合作學習,根據已學過的知識,你能解下列一元一次不等式嗎?
(1)5x>3(x-2)+2 (2)2m-3<(7m+3)/2
2.解一元一次不等式與解一元一次方程的步驟類似。解一元一次不等式的一般步驟和根據如下:
步驟根據
1去分母不等式的基本性質3
2去括號單項式乘以多項式法則
3移項不等式的基本性質2
4合并同類項,得ax>b,或ax<b (a≠o)合并同類項法則
5兩邊同除以a(或乘1/a)不等式的基本性質3
3.例1.解不等式3(1-x)>2(1-2x)
解:去括號,得3-3x>2-4x
移項,得-3x+4x>2-3
合并同類項,得x>-1
4.例2.解不等式(1+x)/2≤(1+2x)/3+1
解:去分母,得3(1+x)≤2(1+2x)+6
去括號,得3+3x≤2+4x+6
移項,得3x-4x≤2+6-3
合并同類項,得-x≤5
兩邊同除以-1.得x≥-5
注:1.五個步驟要求當堂背出,同桌之間可以互相核對。
2.要求作業嚴格按照上述步驟進行。
三、課內練習
解下列不等式,并把解在數軸上表示出來:
(1)5x-3<1-3x
(2)3(1-3x)-2(4-2x) ≤0
(3)(2x-1)/4-(1+x)/6≥1
四、小結:
1.解一元一次不等式的基本步驟。
2.不等式的解在數軸上的表示方法。
《一元一次不等式》的教學反思
本節內容是一元一次不等式組的基礎。現對本節課從以下幾方面進行反思:
一、課堂教學結構反思
本節課通過復習解一元一次不等式以及在數軸上表示解集開始引入新的`問題,學生通過對新問題的討論、交流與研究,明確了方法與注意事項,并為利用一元一次不等式解決實際問題作了鋪墊。這樣的程序符合學生的認知規律,教學取得了不錯的效果。適時地由學生自己合作、交流,歸納出一般性的方法,對于學生從整體上把握知識以及養成總結的習慣是大有幫助的。
二、有效的課堂提問反思
復習舊知識的提問,可以加深對本課知識的理解,又能更好地鞏固前面的內容,起到承上啟下的作用。提問過程中可以達到師生間的相互交流。教學提問中,比如:不等式的基本性質是什么?不等式的概念是什么?不等式的解是什么?學生在理解解一元一次方程步驟的基礎上,類比解一元一次不等式的步驟就有了進一步的認識。由于學生的基礎比較差,課堂教學提問中,由易到難,深入淺出,盡可能讓學生學會、會學、會做。
三、有效的課堂參與反思
本節課我從復習舊知識,提問,動手操作,合作交流、形成共識的基礎上,過渡到一元一次不等式更一般的情況。在課堂活動中經歷、感悟知識的生成、發展與變化過程,重在學生參與完成。通過精心設計問題、課堂討論,中間貫穿鼓勵性語言,并讓學生自己理清思路、板書過程,鍛煉學生語言表達能力和書寫能力,激發了學生學習積極性,培養學生的參與意識和合作意識,學生在各個環節中,運用所學的知識解決問題,進而達到知識的理解和掌握,使學生真正參與到知識形成發展過程中來。
本節課較好的方面:
1.本節課能結合學生的實際情況明確學習目標,注意分層教學的開展;
2.課程內容前后呼應,前面練習能夠為后面的例題作準備。
3.及時對學生學習的知識進行檢查。
4.對過去遺留的問題,如:去括號時出現符號錯誤,去分母是漏乘,系數花1時分子與分母倒了等等問題,在課堂巡視時,發現問題并及時糾正,使學生在典型錯誤中吸取教訓。
不足方面:課容量少,留給學生自己獨立思考,討論的時間較少。課堂上沒有發揮學生的力量,開展“生幫生”的活動。在課堂上沒有做到嘗試著少說,給學生留些自由發展的空間。設計的教學環節,也沒有多思考一些學生的所想所做,真正做好學生前進道路上的引導者。本課在現場操作與反饋中,與教學設想仍有一定的差距,許多地方還停留在表面形態,師生都還未能很習慣地進入角色。
等式第一課時 篇4
一、 說教學目標
1. 了解一元一次不等式的概念;
2. 會解一元一次不等式。
3.通過學習對一元一次不等式的概念及解一元一次不等式的探究過程,體會類比數學思想方法。
4.培養學生理論聯系實際的思維能力及總結概括能。
基于對數學新課程標準的理解,數學是研究數量關系和變化規律的數學模型,可以幫助學生從數量關系的角度更準確、清晰地認識、描述和把握現實世界,體會數學思想,發展學生的思維水平。本教材的結構和教學內容分析,結合七年級學生的認知結構和心理特點,
基于教學大綱和新課程標準的要求,本章的結構和教學內容分析,結合七年級學生的認知發展水平和心理特點,
基于對學情的了解,《一元一次不等式》是人教版必修教材第 9 章第 2 課時的教學內容。在此之前,學生們已經學習了一元一次方程這為過渡到本課題的學習起到了鋪墊的作用。而本課題的理論、知識是學好以后課題的基礎,它在整個教材中起著承上啟下的作用。
綜上所述,我將本節課的教學重點確定:會解一元一次不等式。教學難點:把不等式中的未知數化為1這一步時,應根據不等式的性質確定不等號的方向是否改變;
二、說教法、學法
數學新課程標準指出,數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。數學知識相對比較抽象,學生在學習是覺得很枯燥,接受新知識會比較困難。為了激發學生學習的主動性、積極性我采用了復習導入法、演示法、講解法、類比法。
三、說學法
根據七年級學生注意力不太集中,又好動的心理特點我采用了合作討論法和自主探究法、練習法以提高學生自覺學習的習慣。
四、說教學過程
在本節課的教學過程中,我能夠根據學生的認知結構和心理特點選擇合適的教學方法,激發學生學習的主動性、積極性,將新知識化難為易,提高本節課的教學效果。我主要從以下五個環節進行教學的。
1、 回顧舊知,提出目標
首先通過不等式的基本性質和一元一次方程的復習引入課題,體現了數學中常用的類比數學思想,既能激發學生學習的興趣,同時這種類比思想有利于提高學生的創造性。再讓學生通過解1道含有分母的一元一次方程,進而回顧一元一次方程的概念和解一元一次方程的步驟達到溫故知新的目的。
2、探究新知
在教學新課的過程中根據教材的重、難點;學生已有知識的實際現狀選擇合適的教法和學法并運用多媒體輔助教學以最大限度的提高教學效率。首先我設計了4道很簡單的一元一次不等式讓學生觀察其共同特點從而很順利的概括出一元一次不等式的概念;再讓學生舉幾個一元一次不等式,從而加深對一元一次不等式概念的理解;再啟發學生類比解一元一次方程的步驟探究一元一次不等式的解法和步驟,進一步比較知其聯系與區別,有利于提高學生的概括總結能力。
3、鞏固練習
通過學生自主合作解2個一元一次不等式,一個不含分母、不含等號,一個含有分母、含有等號。這樣由淺入深的設計讓學生更容易注意到在數軸上表示解集時若包括分界點畫實心點,若不包括分界點畫實心點。
4、歸納小結 達標檢測
設計一個問題 (議一議):解不等式移項時應注意什么?系數化為1時應注意什么?在數軸上表示解集時應注意什么?是本節課的知識系統化。
注意:解不等式移項時要變號但不改變不等號的方向;系數化為1時不等式兩邊同除以或乘負數時不等號的方向要改變;在數軸上表示解集時若包括分界點畫實心點,若不包括分界點畫空心點。
5、作業布置
讓學生把教材第126頁必做第1題和選做第2題寫在課堂作業本上以進一步鞏固本節課的知識。
總之,本節課在教學時我采用的是復習導入法、類比數學思想方法。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。讓學生體會類比的數學思想方法的重要性和創新性。從而讓他們通過回顧和練習解一元一次方程的過程,借助類比思想探索一元一次不等式的解法,深刻體會溫故知新的成就感,進而輕松愉快的獲得新知,幫助學生認識自我,建立學習數學的信心。