《三角形的內角和》數學教案范文(精選14篇)
《三角形的內角和》數學教案范文 篇1
教學目標
通過猜想、驗證,了解三角形的內角和是180度。在學習的'過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。
教學重難點
三角形的內角和課前準備電腦課件、學具卡片。
教學活動
一、計算三角尺三個內角的和。
出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?
引導學生說出90度、60度、30度。
出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。
提問:請同學們任選一個三角尺,算出他們三個角一共多少度?
學生計算后指名回答。
師:三角尺三個角的和是180度。
二、自主探索,解決問題。
提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上 任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然后小組內交流。
學生小組活動,教師了解學生情況,個別同學加以輔導。
全班交流:讓學生分別說出三個角的度數以及它們的和。
提問:你發現了什么?
:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。
三、試一試
要求學生先計算,再用量角器量,最后比較結果是否相同?讓學生說說計算的方法。
教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以
計算的結果為準。
四、鞏固提高
完成想想做做的題目。
《三角形的內角和》數學教案范文 篇2
最近,在區教研室的安排下,我在全區新課改教材培訓會上講了一節示范課,內容是人教版實驗教材第八冊《三角形的內角和》。這節課課前得到了區教研室專家的精心指導,課后受到學生和聽課教師的一致好評。我想這節的成功之處就在于給學生一個開放的學習環境,給學生一個探究的學習天地,讓學生“啟思質疑 引探新知”。縱觀本課,猜想的提出、驗證,方法、結論的得出,都是學生個體主動參與、合作探究的結果。這樣的數學課堂教學過程,充滿了觀察、實驗、猜想、驗證、推理與交流等豐富多彩的數學活動,培養了學生的探索精神,并在探究過程中獲得豐富的情感體驗。
教學內容:義務教育課程標準實驗教科書數學第八冊(人教版)
【片段 1 】創設情景,揭示課題。
出示多媒體課件:如圖 1
圖 1
師:同學們觀察到什么?
生 1 :兩條直線相交形成四個角。
生 2 :這四個角有兩個銳角、兩個鈍角。
生 3 :因為∠ 1 和∠ 2 組成一個平角,所以∠ 1+ ∠ 2=180 °;同樣道理,∠ 3+ ∠ 4=180 °。
生 4 :∠ 1+ ∠ 2+ ∠ 3+ ∠ 4=360 °
出示多媒體課件:如圖 2
圖 2
師:什么變了?什么沒變?
生 1 :∠ 1 和∠ 2 的大小都變了,但 ∠ 1 和∠ 2 的和還是 180 °;∠ 3 和∠ 4 的大小都變了,但 ∠ 3 和∠ 4 的和還是 180 °。它們的和沒變。
生 2 :∠ 1+ ∠ 2+ ∠ 3+ ∠ 4=360 °,這四個角的總和也沒變。
師:老師把其中一條直線繼續旋轉,如圖 3 ,讓∠ 1 變成了一個直角,你們知道其它三個角的是什么角嗎?各是多少度?
圖 3
生 1 :其它四個角都是直角,都等于 90 °。
師:想一想,哪些平面圖形中有四個直角。
生:長方形和正方形。
多媒體課件出示一個圖片:如圖 4 。
圖 4
師:我們把長方形和正方形里的四個直角叫做內角。
師:想一想,什么叫做內角和?
生:(略)
師:三角形有幾個內角?
生:(略)
師:什么是三角形的內角和?
生:(略)
師:三角形的內角和會是多少度呢?是銳角三角形的內角和大還是鈍角三角形的內角和大呢?請同學猜一猜。
生:(略)
【評析】關注學生的生活經驗和已有的知識體驗是《標準》的重要理念之一。這節通過學生已有的知識經驗出發,讓學生猜一猜、說一說,從而為學生的探索提供空間。同時,在教學過程中滲透了“變與不變”的數學思想,這種思想對學生形成“三角形形狀改變,但內角和不變”的觀念很有幫助,做好了鋪墊。在教學過程中滲透數學思想也是《標準》的重要理念之一。
【片段 2 】引導小組合作,自主探究。
多媒體課件出示一個正方形和一個長方形。如圖 5
圖 5
師:這是兩個什么平面圖形?這兩個圖形有什么聯系?
生 1 :它們都有四個直角。
生 2 :它們都有四條邊。
生 3 :它們都能沿對角線分成兩個完全一樣的直角三角形。
師:同學們觀察的真仔細!我們沿著長方形和正方形的對角線對折就會把長方形和正方形平均分成兩個完全一樣的直角三角形。請同學們利用學具當中的正方形和長方形紙片動手折一折,并思考:這樣兩個完全一樣的直角三角形,它們的內角和各自有多少度?
[ 學生們以小組為單位,動手操作,實驗,對折,討論,交流。 ]
師:請同學們把自己的發現跟全班同學交流一下。
生 1 :我們小組發現,正方形沿著對角線對折,可以分成兩個完全一樣的等腰直角三角形,這個三角形有一個直角等于 90 °,另外兩個銳角相等,都是 45 °。所以,這個三角形的內角和 =90 ° +45 ° +45 ° =180 °。
生 2 :我們小組發現,長方形沿著對角線對折,可以分成兩個完全一樣的直角三角形,因為長方形的內角和是 360 °,所以,這個直角三角形的內角和 =360 °÷ 2=180 °。
生 3 :我們小組發現,正方形沿著對角線對折,可以分成兩個完全一樣的等腰直角三角形,因為正方形的內角和是 360 °,所以,這個直角三角形的內角和 =360 °÷ 2=180 °。
師:同學們說的很好,那么,是不是任意的一個直角三角形的內角和都是 180 °呢?
生:我認為任意一個直角三角形的內角和都是 180 °。因為我們可以找來一個完全一樣的直角三角形,并把這兩個完全一樣的直角三角形拼成一個長方形,長方形的內角和是 360 °,所以,一個直角三角形的內角和就是 360 度的一半。 360 °÷ 2=180 °。
師:同學們同意他的觀點嗎?
生:同意。
師:那我們可以得出一個怎樣的結論?
生:直角三角形的內角和是 180 度 .
【評析】全日制義務教育《數學課程標準》(實驗稿)中指出,“學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。”“動手實踐、自主探索與合作交流是學生學習數學的重要方式。”在教學設計中注意體現這一理念,在主動的、互相啟發的學習活動中使學生初步感受數學的思想方法,受到數學思維的訓練,獲得知識,發展能力。 《標準》還指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能……”這節課,學生在小組中為了完成共同的任務,形成了有明確責任分工的互助性學習,將個人之間的競爭轉化為小組之間的競爭,有助于培養學生合作精神和競爭意識,彌補一個教師難以面向有差異的眾多學生的教學不足,實現使每個學生都得到發展的目標。由于有了學生的積極參與和高效的交互活動,使教學不僅僅只是體現一個認知、探究、交流、決策的過程,同時還體現了一個交往與審美的過程。
【片段 3 】動手操作,驗證猜想。
師:直角三角形的內角和是 180 度直角,那么鈍角三角形和銳角三角形的內角和是多少度?請同學們猜想一下。
生 1 :我猜想鈍角三角形的內角和可能大于 180 度,因為它有一個鈍角。銳角三角形的內角和可能小于 180 度,因為它的三個角都是銳角。
生 2 :我猜想鈍角三角形和銳角三角形的內角和都是 180 度。
師:哪種猜想正確呢?為了驗證我們的猜想,我們該怎么辦?請同學們利用學具動手操作,小組合作,看哪個小組想的辦法最多?
[ 學生們以小組為單位,動手操作,實驗,對折,討論,交流,教師給與充分的時間。 ]
師:下面請同學們交流,看看你有什么發現?一會兒同學們交流的時候,如果你覺得他的發言很精彩,我們可以送上掌聲。如果你覺得他的發言不能讓你信服,那你就舉手補充,好嗎?
生 1 :我們用量角器分別量出∠ 1 、∠ 2 、∠ 3 ,再求和,發現鈍角三角形和銳角三角形的內角和都是 180 度。(在展示臺展示)
生 2 :我們把三角形的三個角∠ 1 、∠ 2 、∠ 3 剪下來,然后拼在一起,就拼成一個平角了。因為平角等于 180 度,所以發現鈍角三角形和銳角三角形的內角和都是 180 度。(在展示臺展示)
生 3 :我們把三角形的三個角∠ 1 、∠ 2 、∠ 3 折到一起,也拼成一個平角了。因為平角等于 180 度,所以鈍角三角形和銳角三角形的內角和都是 180 度。(展示折的方法)
生 4 :我們把三角形的三個角∠ 1 、∠ 2 、∠ 3 畫下來,畫到一起,就拼成一個平角了。因為平角等于 180 度,所以發現鈍角三角形和銳角三角形的內角和都是 180 度。(在展示臺展示)
生 5 :我們在三角形內畫一條高,就把三角形分成了兩個直角三角形,這兩個直角三角形的內角和等于 180 °× 2=360 °。當這兩個直角三角形拼在一起形成一個新大三角形時,就去掉了兩個直角,所以三角形的內角和 =360 °- 90 °- 90 ° =180 °。(在展示臺展示)
師:同學們真聰明,想出了這么多好的辦法!通過剛才的實驗,我們驗證了三角形的內角和是 180 °。
師:剛才同學們用的畫、折、拼的方法都是將三角形的三個內角轉化成我們熟悉的角,這種轉化方法是我們學習數學的重要方法,希望同學們在今后的學習中大膽應用。
【評析】學生的數學學習內容是現實的、有意義的、富有挑戰性的。從特殊三角形到一般三角形的內角和,對學生來說,是富有挑戰性的。特別是“鈍角三角形和銳角三角形的內角和是多少度?”這一開放性的問題,引發了學生思維上的沖突。學生在這里遇到了困難,產生了分歧,有了爭執。教師把握機會,組織學生動手操作驗證,這個操作是必要的,也是適時和有價值的。這里融入了學生的猜測、驗證、推理與交流等數學活動,充分體現了學生的數學學習是一個生動活潑、主動的和富有個性的過程。我以為,活動是數學教學的基本形式,思考是數學的核心問題。改善學習方式,重要的不是研究教師怎樣講,而是研究如何創設良好的問題情境,讓學生運用已有經驗,在思考與活動中,經歷“再創造”的過程。以上教學片段反映了執教者倡導探究性、合作性的學習活動,改善學生學習方式的某些側面。從而培養學生的合作交流、動手實踐的能力。
【片段 4 】 學生新知鞏固,知識應用拓展。
師:今天這節課后你還想知道些什么?你有什么收獲?有什么遺憾?
生 1 :我想知道三角形有沒有外角?
師:三角形有外角,今后我們會學習了解的。
生 2 :我想知道學習三角形的內角和有什么用?
師:學習三角形的內角和有什么用?請同學們看屏幕!(多媒體課件出示問題 1 :流動紅旗為等腰直角三角形,兩個底角為 70 度,求流動紅旗的頂角度數。)
師:請同學們思考,求出流動紅旗的頂角度數?
生: 180-70-70=40 (度)
(多媒體課件出示問題 2 :交通警示牌“讓”為等邊三角形,求其中一個角的度數。)
師:請同學們思考,求出交通警示牌一個角的度數?
生: 180 ÷ 3=60 (度)
師:現在同學們知道了吧,知道三角形的內角和,我們就可以解決許多求三角形的一個內角度數的問題。
師:同學們有什么收獲?還有什么遺憾?
生 1 :我知道了不管什么三角形,它的內角和都是 180 °。
生 2 :通過這節課的學習,我覺得做事不能光猜想。
生 3 :我覺得小組合作探究能節省時間。
生 4 :我有遺憾,我還想知道其它圖形的內角和。
師:由于時間限制,課堂上老師不能跟大家介紹多邊形的內角和了,我們就把它當作課外作業,下課后請同學們自己或與他人協作探究多邊形的內角和,好嗎?
【評析】設計的練習讓學生更深的對所學的新知加以鞏固,從而促使學生綜合運用知識,增強觀察生活,解決問題的能力。通過進一步的練習,運用所學知識解決簡單的實際問題,發展學生的觀察、歸納、概括能力和初步的空間想象力。同時,知識的應用密切聯系生活實際,讓學生根據自己的理解去解決生活中的問題。通過知識的應用,學生不但進一步鞏固了所學知識,同時也認識到數學來源于生活,讓學生從觀察中發現生活中存在的一些數學知識,并能運用這些知識、經驗來解決有關的數學問題,讓他們感到身邊處處有數學,從而提高他們學習數學的積極性。
教學反思:
一、注重新舊知識的延續性。
通過復習、回憶已經學過的四邊形知識為新內容進行鋪墊。同時,也為知識間的遷移作了伏筆。《課標》強調學生數學學習的過程是建立在經驗基礎上的一個主動建構的過程。
二、創設問題情景,以疑激思。
古人云:學起于思,思源于疑。學生的積極思維往往是由問題開始,又在解決問題中得到發展。課堂環節中的適時提問:“請同學們猜想一下,這個三角形的內角和是多少度嗎?”,猜想本身就是學習的動力,掀起了學生積極思維的小高潮。
三、讓學生動起來,以動啟思。
著名心理學家皮亞杰說過:“兒童的思維是從動作開始的。”可見,人的手腦之間有著非常密切的聯系。本課中,通過讓學生動手操作,量、剪、拼、折等實驗活動,得到的不僅是三角形內角和的知識,也使學生學到了怎樣由已知探索未知的思維方式與方法。培養了他們主動探索的精神。讓學生在活動中學習,在活動中發展,是這節課的突出特點。
四、小組合作,自主探究。
任何一項科學研究活動或發明創造都要經歷從猜想到驗證的過程。“是否任何三角形內角和都是 180 °”,這個猜想如何驗證,這正是小組合作的契機。通過小組內交流,使學生認識到可以通過多種途徑來驗證,可以量一量、拼一拼、折一折,讓學生在小組內完成從特殊到一般的研究過程。然后再小組匯報研究結果以及存在問題。數學教學是數學活動的教學,是師生之間、學生之間交往互動與共同發展的過程。這堂課中的全班交流教學環節,不僅能使學生暢所欲 言、互起互發、共同發展,而且真正體現了學生是學習的主人,是學習的主體這一現代教育的主題。
五、注重數學思想方法,讓學生受到數學思想的熏陶與啟迪。
這節課在教學過程中滲透了“變與不變”、轉化等數學思想。
六、注重數學知識與生活的聯系,注重培養學生的應用意識。在
學生新知鞏固,知識應用拓展階段,教師出示現實生活中的物體:流動紅旗和交通警示牌,體現了“數學來源于生活”的理念,同時也突出了“數學注重應用”的理念。
《三角形的內角和》數學教案范文 篇3
教學內容:
p.28、29
教材簡析:
本節課的教學先通過計算三角尺的3個內角的度數的和,激發學生的好奇心,進而引發三角形內角和是180度的猜想,再通過組織操作活動驗證猜想,得出結論。
教學目標:
1、讓學生通過觀察、操作、比較、歸納,發現三角形的內角和是180。
2、讓學生學會根據三角形的內角和是180 這一知識求三角形中一個未知角的度數。
3、激發學生主動參與、自主探索的意識,鍛煉動手能力,發展空間觀念。
教學準備:
三角板,量角器、點子圖、自制的三種三角形紙片等。
教學過程:
一、提出猜想
老師取一塊三角板,讓學生分別說說這三個角的度數,再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180
看了這2個算式你有什么猜想?
(三角形的三個角加起來等于180度)
二、驗證猜想
1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數,再把三個角的度數相加。
老師注意巡視和指導。交流各自加得的結果,說說你的發現。
2、折、拼:學生用自己事先剪好的圖形,折一折。
指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發現:三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
繼續用該方法折鈍角三角形,得到同樣的結果。
直角三角形的折法有不同嗎?
通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數和也是180度。
3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。
在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。
小結:我們可以用多種方法,得到同樣的結果:三角形的內角和是180。
4、試一試
三角形中,角1=75,角2=39,角3=( )
算一算,量一量,結果相同嗎?
三、完成想想做做
1、算出下面每個三角形中未知角的度數。
在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
指出:在計算的時候,我們可根據具體的數據選擇更佳的算法。
2、一塊三角尺的內角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內角和是多少度?
可先猜想:兩個三角形拼在一起,會不會它的內角和變成1802=360 呢?為什么?
然后再分別算一算圖上的這三個三角形的內角和。得出結論:三角形不論大小,它的內角和都是180 。
3、用一張正方形紙折一折,填一填。
4、說理:一個直角三角形中最多有幾個直角?為什么?
一個鈍角三角形中最多有幾個直角?為什么?
四、布置作業
第4、5題
《三角形的內角和》數學教案范文 篇4
各位評委、老師:
大家好!
我說課的題目是《三角形內角和》,內容選自人教版九年義務教育七年級下冊第七章第二節第一課時。
一、本節課在新一輪課程改革下的設計理念:
數學是人與人之間層面上進行的交往。課堂教學中的交往主要是教師與學生、學生與學生之間的交往。它需要運用“對話式”的學習方式,采取多種教學策略,使學生在合作、探索、交流中發展能力。新課程中對學生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統的教學模式,這正是教師在新課程中尋找新的教學方式的著眼點。應該說,新的教學方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學活動的框架,建立適應師生相互交流的教學活動體系;滿足學生的心理需求,實現教者與學者感情上的融洽和情感上的共鳴;給學生體驗成功的機會,把“要我學”變成“我要學”。我認為教師角色的轉變一定會促進學生的發展、促進教育的長足發展,在未來的教學過程里,教師要做的是:幫助學生決定適當的學習目標,并確認和協調達到目標的最佳途徑;指導學生形成良好的學習習慣,掌握學習策略;創造豐富的教學情境,培養學生的學習興趣,充分調動學生的學習積極性;為學生各種便利,為學生的學習服務;建立一個接納的、支持性的、寬容的課堂氣氛;作為學習的參與者,與學生分享自己的感情和想法;和學生一道尋找真理,能夠承認自己的過失和錯誤。教學情境的營造是教師走進新課程中所面臨的挑戰,適應新一輪基礎教育課程改革的教學情境不是文本中的約定,也不是現成的拿來就能用的,需要我們在教學活動的全過程中去探索、研究、發現、形成。
二、教材分析與處理:
三角形的內角和定理揭示了組成三角形的三個角的數量關系,此外,它的證明中引入了輔助線,這些都為后繼學習奠定了基礎,三角形的內角和定理也是幾何問題代數化的體現。
三、學生分析
處于這個年齡階段的學生有能力自己動手,在自己的視野范圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數學建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學生充分的自由和空間,同時注意問題的開放性與可擴展性。
四、教學目標:
1、知識目標:在情境教學中,通過探索與交流,逐步發現“三角形內角和定理”,使學生親身經歷知識的發生過程,并能進行簡單應用。能夠探索具體問題中的數量關系和變化規律,體會方程的。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學中,通過有效措施讓學生在對解決問題過程的反思中,獲得解決問題的經驗,進行富有的學習。
2、能力目標:通過拼圖實踐、問題思考、合作探索、組內及組間交流,培養學生的的邏輯推理、大膽猜想、動手實踐等能力。
3、德育目標:通過添置輔助線教學,滲透美的和方法教育。
4、情感、態度、價值觀:在良好的師生關系下,建立輕松的學習氛圍,使學生樂于學數學,遇到困難不避讓,在數學活動中獲得成功的體驗,增強自信心,在合作學習中增強集體責任感。
五、重難點的確立:
1、重點:三角形的內角和定理探究與證明。
2、難點:三角形的內角和定理的證明方法(添加輔助線)的討論
六、教法、學法和教學手段:
采用“問題情境—建立模型—解釋、應用與拓展”的模式展開教學。
采用對話式、嘗試教學、問題教學、分層教學等多種教學方法,以達到教學目的。
《三角形的內角和》數學教案范文 篇5
一、說教材
1、我說課的內容是《九年義務教育人教版》第八冊的《三角形的內角和》。
2、教材簡析
三角形在平面圖形中是簡單的,也是最基本的多邊形,這部分內容是在學生對三角形已經有了直觀的認識,并且對三角形的特性及分類有了一定的了解的基礎上進行學習的。通過這部分內容的學習,培養學生的實際操作能力、觀察能力、小組合作交流能力、語言表達能力以及抽象的思維能力,為以后學習多邊形打好基礎。
3、教學目標
根據教材的內容以及學生的知識現狀和年齡心理特點,我制定以下教學目標。
(1)知識目標:從實際出發,通過互動學習初步感知三角形的內角和是180度,在此基礎上,用實驗的方法加以探究。
(2)能力目標:通過教學活動,培養學生動手操作、歸納推理以及抽象概括的能力。
(3)情感目標:使學生經歷探究的過程,體會與他人合作交流的樂趣,學會用數學的眼光去發現問題、解決問題。感受到數學的價值。
4、教學重點與難點。
《三角形內角和》的教學是學生從直觀形象到抽象掌握的過程,即學生從感性認識到理性認識的升華,對學生發展類推的能力有著重要的作用。因此,我認為學生通過操作,自主探究三角形的內角和是180度是本節課的重點;采用多種途徑證明三角形的內角和等于180度是本節課的難點。
5、教學準備
為了更好的達到教學目標,突出重點,突破難點,我準備以下教具和學具:課件、不同類型的三角形紙片、量角器、剪刀、膠水。
二、說教法學法
根據新課程教材的特點和學生實際情況,教學中以直觀教學為主。運用動手觀察,分組討論等多種方法,采用現代化手段結合教材,讓學生在“想一想”、“做一做”、“說一說”的自主探索過程發揮學生相互之間的作用,讓學生自己動腦、動手、動口中促進思維的發展。培養學生的動手操作能力、語言表達能力和自學能力。
本節課在學生學習方法的引導上盡量體現:
①在具體的情景中,讓學生親身經歷發現問題、提出問題、解決問題的過程,體驗成功的快樂。
②通過師生、生生互動,探究、合作交流,完善自己的想法,形成自己獨特的學習方法。
③通過靈活、有趣和富有創意的練習,提高學生解決問題的能力。
三、學生情況分析
學生在日常生活中接觸了很多大小不同的角,但對于三角形內角和等于180度的知識,生活中很少接觸,顯得比較抽象,對于四年級的學生抽象思維雖然有一定的發展,但依然以形象具體思維為主,分析、綜合、歸納、概括能力較弱,有待進一步培養。
四、說教學流程
為了達到本節課的教學目標,我這樣設計教學流程:
1、設疑導入。
為了激起學生求知的欲望,再根據本課題的特點和四年級學生心理的特點,我采取了直接設疑導入。具體步驟如下:
(1)讓學生匯報三角尺各個內角的度數,并計算出每個三角尺的內角和是多少度。
(2)提出問題:當學生答出三角尺的內角和度數之后,我問:所有的三角形的內角和都是180度嗎?學生討論之后引出課題。
2、動手操作,自主探究。
為創新學生的思維,張揚學生的,學生動手量、剪、拼等活動貫穿于整個課堂。我根據四年級學生的心理特點設計了這一環節,其目的是:讓學生在活動過程中形成問題意識,從而展開想象,培養學生的問題意識。具體做法是:(1)先讓學生思考如何驗證三角形的內角和是180度,然后通過討論交流得到幾種驗證方法。(2)讓學生利用量角器量出學具三角形紙片的各個內角的度數,再求出三角形的內角和,初步感知三角形的內角和等于180度。(3)讓學生利用剪拼的方法感知三角形的三個內角拼在一起是一個平角,從而得到結論。
3、鞏固新知
本環節我設計了不同類型的習題。有操作題,計算題,畫圖題,拼角題等等。其目的是:通過這一環節,讓學生掌握、理解三角形的內角和等于180度,并把所學知識回歸于生活實踐,從而達到情感、態度、價值觀這一教學目標的實現。
五、板書設計
板書是課堂教學語言的一種表現形式,它具有啟發性、指導性和應用性。精巧的板書設計有“引”和“導”的功能,“引”是引學生之思,“導”是導學生之路。
《三角形的內角和》數學教案范文 篇6
【教學目標】
1.學生動手操作,通過量、剪、拼、折的方法,探索并發現"三角形內角和等于180度"的規律。
2.在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發求知欲和探索興趣。
【教學重點】
探究發現和驗證"三角形的內角和為180度"的規律。
【教學難點】
理解并掌握三角形的內角和是180度。
【教具準備】
PPT課件、三角尺、各類三角形、長方形、正方形。
【學生準備】
各類三角形、長方形、正方形、量角器、剪刀等。
【教學過程】
口算訓練(出示口算題)
訓練學生口算的速度與正確率。
一、謎語導入
(出示謎語)
請畫出你猜到的圖形。誰來公布謎底?
同桌互相看一看,你們畫出的三角形一樣嗎?
誰來說說,你畫出的是什么三角形?(學生匯報)
(1)銳角三角形,(銳角三角形中有幾個銳角?)
(2)直角三角形,(直角三角形中可以有兩個直角嗎?)
(3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)
看來,在一個三角形中,只能有一個直角或一個鈍角,為什么不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什么奧秘呢?這節課,我們一起來學習"三角形的內角和。"(板書課題:三角形的內角和)
看到這個課題,你有什么疑問嗎?
(1)什么是內角?有沒有同學知道?
內:里面,三角形里面的角。
三角形有幾個內角呢?請指出你畫的三角形的內角,并分別標上∠1、∠2、∠3.
(2)誰還有疑問?什么是內角和?誰來解釋?(三個內角度數的和)。
(3)大膽猜測一下,三角形的內角和是多少度呢?
【設計意圖】
創設數學化的情境。學生用已經學的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學生的這種認知沖突,激發學生的學習興趣。
二、探究新知
有猜想就要有驗證,我們一起來探究用什么方法能知道三角形的內角和呢?
1、確定研究范圍
先請大家想一想,研究三角形的內角和,是不是應該包括所用的三角形?
只研究你畫出的那一個三角形,行嗎?
那就隨便畫,挨個研究吧?(太麻煩了)
怎么辦?請你想個辦法吧。
分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)
2、探究三角形的內角和
思考一下:你準備用什么方法探究三角形的內角和呢?
小組合作:從你的學具袋中,任選一個三角形,來探究三角形的內角和是多少度?
小組匯報:
(1)量一量:把三角形三個內角的度數相加。
直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?
(2)拼一拼:把三角形的三個內角剪下來,拼成了一個平角。
能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?
(3)折一折:把三角形的三個角折下來,拼成了一個平角。
這種方法真了不起,能借助平角的度數來推想三角形內角和是180°。
總結:同學們動腦思考,動手操作,運用不同的方法來驗證三角形的內角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能借助學過的圖形,更科學更準確的來驗證三角形的內角和?
3、演繹推理的方法。
正方形四個角都是直角,正方形內角和是多少度?
你能借助正方形創造出三角形嗎?(對角折)
把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內角和:360°÷2=180°
再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內角和:360°÷2=180°
這種方法避免了在剪拼過程中操作出現的誤差,
舉例驗證,你發現了什么?
通過驗證,知道了直角三角形的內角和是180度。
你能把銳角三角形變成直角三角形嗎?
把銳角三角形沿高對折,分成了兩個直角三角形。
一個直角三角形的內角和是180°,那么這個銳角三角形的內角和就是180°×2=360°了,對嗎?(360-180=180°)
通過計算,我們知道了這個銳角三角形的內角和是180°,那么所有的銳角三角形的內角和都是180°嗎?你是怎么知道的?
通過剛才的計算,你發現了什么?(銳角三角形內角和180°)
鈍角三角形的內角和,你們會驗證嗎?誰來說說你的想法?180×2-90-90=180°
通過驗證,你又發現了什么?(鈍角三角形內角和180°)
4、總結
通過分類驗證,我們發現:直角180,銳角180,鈍角180,也就是說:三角形的內角和是180°。也驗證了我們的猜想是正確的。(板書)
5、想一想,下面三角形的內角和是多少度?(小--大)
你有什么新發現?(三角形的內角和與它的大小,形狀沒有關系。)
【設計意圖】
為了滿足學生的探究欲望,發揮學生的主觀能動性,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。
三、自主練習
1、在一個三角形中,如果想求一個角的度數,至少得知道幾個角的度數呢?(2個)那我們就試一試,挑戰第一關。(兩道題)
2、算得真快!如果只知道一個角的度數,還能求出未知角的度數嗎?挑戰第二關。(三道題)
3、說得真清楚,如果一個角的度數也不知道,你還能求出未知角的度數嗎?挑戰第三關。(一道題)
師:同學們真了不起,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,都能正確求出未知角的度數。
4、學無止境,課下,請你利用三角形的內角和,探究一下四邊形、五邊形、六邊形的內角和各是多少度?
【設計意圖】
練習由淺入深,層層遞進。從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,梯度訓練,拓展思維。
四、課堂總結
同學們,回想一下,這節課我們學習了什么?通過這節課的學習,你有哪些收獲呢?
真了不起,同學們不僅學到了知識,還掌握了學習的方法。"在數學的天地里,重要的不是我們知道什么,而是我們怎么知道的",在這節課上,重要的不是我們知道了三角形的內角和是180°,而是我們通過猜測,一步一步驗證,得到這個規律的過程。
課后反思
《三角形的內角和》是五四制青島版四年級上冊第四單元的信息窗二,本節課是在學生學習了與三角形有關的概念、邊、角之間的關系的基礎上,讓學生動手操作,通過一系列活動得出"三角形的內角和等于180°".
本著"學貴在思,思源于疑"的思想,這節課我不斷創設問題情境,讓學生去猜想、去探究、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內角和是多少?大部分的學生已經知道了這一知識,所以很輕松地就可以答出。但是只是"知其然而不知其所以然".
為此,我設計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環節。在操作活動中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學生的注意力。使學生感受到每種活動的特點,這對他認識能力的提高是有幫助的。
最后通過習題鞏固三角形內角和知識,培養學生思維的廣闊性,為了強化學生對這節課的掌握,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,層級練習,步步加深,梯度訓練。
教學是遺憾的藝術。當然本節課的教學中,存在許多不盡如意之處:
1、讓學生養成良好的學具運用習慣,特別是小組學生在合作操作時,應有效指導,對學生及時評價,激勵表揚,調動學生學習的積極性與主動性。
2、學生在介紹剪拼的方法時,可以讓介紹的學生先上臺演示是如何把內角拼在一起,這樣學生在動手操作的時候就可以節省時間。
3、在做練習時,為了趕時間,題出現的頻率較快,留給學生計算思考的時間不足,可能只照顧到好學生的進程,沒有關注全體學生,今后應注意這一點。
教學是一門藝術,上一節課容易,上好一節課談何容易,在今后的課堂教學中,只有勤學、多練,才能更好的為學生的學習和成長服務,讓自己的人生舞臺綻放光彩。
《三角形的內角和》數學教案范文 篇7
教學目標
⑴探索并發現三角形的內角和是180°,能利用這個知識解決實際問題。
⑵學生在經歷觀察、猜測、驗證的過程中,提升自身動手動腦及推理、歸納總結的能力。
⑶在參與學習的過程中,感受數學獨特的魅力,獲得成功體驗,并產生學習數學的積極情感。
教學重點:檢驗三角形的內角和是180°。
教學難點:引導學生通過實驗探究得出三角形的內角和是180度。
教學環節:問題情境與
教師活動:學生活動媒體應用設計意圖
導入新課:
一、復習舊知,導入新課。
1、復習三角形分類的知識。
師出示三角形,生快速說出它的名稱。
2、什么是三角形的內角?
我們通常所說的角就是三角形的內角。為了便于稱呼,我們習慣用∠A、∠B、∠c來表示。
什么是三角形的內角和?
三角形“三個內角的度數之和”就是三角形的內角和。用一個含有∠A、∠B、∠c的式子來表示應該如何寫?∠A+∠B+∠c。
3、今天這節課啊我們就一起來研究三角形的內角和。(揭題:三角形的內角和)
由三角形的內角引出三角形的內角和,“∠A+∠B+∠c”的表示形式形象的體現出三內角求和的關系
二、動手操作,探究新知
1、出示三角板,猜一猜。
師:這個三角形的內角和是多少度?熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數
把三角形三個內角的度數合起來就叫三角形的內角和。是不是所有的三角形的內角和都是180°呢?你能肯定嗎?
我們得想個辦法驗證三角形的內角和是多少?可以用什么方法驗證呢?
3.學生測量
4.匯報的測量結果
除了我們這節課大家想到的方法,還有很多方法也能驗證三角形的內角和是180°到初中我們還要更嚴密的方法證明三角形的內角和是180°
5、鞏固知識。
一個三角形中能不能有兩個直角?能不能有2個鈍角?
環節:
三、應用所學,解決問題。
1、基礎練習(課本第68頁做一做)
在一個三角形中,∠1=140度,∠3=25度,求∠2的度數。
2、判斷題
(1)大三角形的內角和大于180度。
(2)三角形的內角和可能是180度。
(3)一個三角形中最多只能有一個直角。
(4)三角形的三個內角分別可能是30度,60度,70度。
3、求出下面三角形各角的度數。
(1)我三邊相等。
(2)我是等腰三角形,我的頂角是96°。(3)我有一個銳角是40°。
四、總結:這節課你有什么收獲?
《三角形的內角和》數學教案范文 篇8
【設計理念】
新課標重視讓學生經歷數學知識的形成過程,要求教師創設有效的.問題情境激發學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數學問題的活動經驗,發展空間觀念和推理能力。
【教材內容】
新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習十六的第1、2、3題。
【教材分析】
三角形的內角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學的,它是學生以后學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發現,安排兩次實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。
【學情分析】
1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。
2、已經有一部分學生知道了三角形內角和是180°,只是知其然而不知所以然。
【教學目標】
1通過“量、剪、拼”等活動發現、驗證三角形的內角和是180°,并能運用這個知識解決一些簡單的問題。
2、在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數學活動經驗,發展空間觀念和推理能力。
3、在參與數學學習活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。
【教學重點】
探索發現、驗證“三角形內角和是180°”,并運用這個知識解決實際問題。
【教學難點】
驗證“三角形的內角和是180°”。
【教(學)具準備】
多媒體課件;銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學步驟】
一、復習舊知,引出課題
1、你已經知道有關三角形的哪些知識?
2、出示課題:三角形的內角和
【設計意圖:也自然導入新課。】
二、提出問題,引發猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預設:
(1)三角形的內角指的是哪些角?
(2)三角形的內角和是什么意思?
(3)三角形的內角一共是多少度?
2、引發猜想
猜一猜:三角形的內角和是多少度?你是怎么猜的?
【設計意圖:提出一個問題比解決一個問題更重要。課始在復習三角形已學知識后,引導學生提出有關三角形的新問題,讓學生學習自己想研究的內容,無疑激發了學生的學習興趣,培養了學生的問題意識。由于學生在平時使用三角板時已經若隱若現地有了特殊的直角三角形的內角和是180度這一感覺,因此本環節,要求學生猜一猜三角形的內角和是多少,并說說是怎么猜的,以激發學生已有知識經驗,并體會到猜想要合理且有根據,同時也為推理驗證的引出作必要的鋪墊。】
三、操作驗證,形成結論
1、交流驗證方法:
(1)用什么方法證明三角形的內角和是180度呢?
預設:
①量算法
②剪拼法
③折拼法等
(2)三角形的個數有無數個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180°度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內角和來證明其他三角形內角和是180°的方法。
6、形成結論:任意三角形的內角和是180°。
【設計意圖:
《標準》指出:“教師應激發學生的積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。”猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發現了三角形內角和是180°這個結論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養學生嚴謹、科學正確的研究態度,讓學生在活動中積累基本的數學活動經驗,為后續的學習提供了經驗支撐。】
四、應用結論,解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風箏的頂角是多少度?
3、辨析訓練,完善結論。
五、課堂總結,歸納研究方法
今天這節課你學到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:
用今天所學的方法繼續研究四邊形的內角和。
七、板書設計:
三角形的內角和
猜測:三角形的內角和是180°?
驗證:量拼
結論:任意三角形的內角和是180°
《三角形的內角和》數學教案范文 篇9
教學目標
知識與能力:學生通過測量、撕拼的方法探索和發現三角形三個內角和是180°。
過程與方法:學生經歷合理猜想和驗證三角形內角度數和等于180°的過程,發展空間觀念及分析推理能力。
情感態度和價值觀:學生在活動中體驗成功的喜悅,激發學生探索數學的愿望和興趣。
重點難點
教學重點:
探究發現三角形的內角和是180度。
教學難點:
在猜想和驗證三角形內角和的過程中發展空間觀念。
教學過程
活動1【導入】理解內角、內角和概念
1、謎語引入:形狀似座山,穩定性能堅,三竿首尾連,學問不簡單,打一幾何圖形猜一猜是什么?
Q:結合謎面的信息來說一說三角形有什么特點?
2、介紹內角:這三個角都在三角形的里面,又叫內角。
Q:三角形有幾個內角?
3、介紹內角和:把三個內角的度數加起來求和就是三角形的內角和。
引出課題:今天我們就來研究三角形內角和。
活動2【活動】觀察圖形
1、觀察圖形的變與不變
ppt依次出示
Q:這是銳角三角形,什么是它的內角和?
出示直角三角形,它的內角和是指?
出示鈍角三角形,內角和是指?
質疑:哪個三角形的內角和最大?
預設1:鈍角三角形內角和大。(說想法)
預設2:一樣大。(說想法)
預設3:180度。
小結:三個三角形的樣子不一樣,大小也不一樣,三個內角也不一樣,但內角和是一樣的。
(二)活動二:猜想內角和不變的度數
Q:這個一樣的度數是多少?你是怎么知道的?
預設1:聽說過,學過。
預設2:直角三角尺上三個角的度數和是180度。
預設3:等邊三角形。
這兩個都是我們知道度數的特殊的三角形,請你根據這個特殊的三角形來大膽的猜猜三角形內角和是多少度?那任意的一個三角形的內角和度數是不是180°呢?今天我們就來一起研究。
活動3【活動】測量驗證
(一)思考量的方法和原因
過渡:你想怎么研究?(用量角器去量)
Q:誰來介紹介紹量的方法?
預設:要想研究內角和,只要把三個內角度數量出來再加起來看看是不是180度就可以了。
(二)動手測量
PPT:操作建議:
1、請你找到三角形的三個內角,用彩筆標序號1、2、3。
2、用量角器仔細測量后,記錄角的度數。
3、列式計算出三角形內角和度數。
動手測量
(三)匯報交流:
學生1展示測量的過程。
Q:還有誰測量的這個銳角三角形,說一說?
追問:為什么同一個三角形內角和度數卻不一樣?
Q:你在測量的過程中遇到了什么困難?
Q:觀察這些數據,雖然都不太一樣,但是都很接近?
小結:測量確實可以幫助我們找到三個角的度數,加起來就可以求出內角和,但是測量有誤差。
活動4【活動】拼角驗證
(一)思考其它驗證方法
Q:你還有其他的方法嗎?
預設1:學生沒有反應。
師引導:說到180度,你想到什么角?(平角)
預設2:撕拼法
Q:怎么把三個內角拼在一起?
(生不撕,教師幫助突破,撕下三個內角。)
Q:你能在投影上拼一拼嗎?
預設3:折疊法
你的方法也很好,你們聽懂了嗎?一會兒可以試試。
預設4:描畫法
Q:怎么描?你能演示一下嗎?
其他同學觀察他在做什么?
引語:剛才說的方法都很好,下面我們自己來試一試。
(二)動手拼一拼
操作要求:
1、請你用彩筆在紙上隨意畫一個三角形,并剪下來。
2、用彩筆標出三個內角。
3、嘗試操作。
動手操作
(三)匯報交流
Q:你是怎么研究的?發現了什么?
(四)小結
剛才每人的三角形是自己任意畫出的,形狀、大小都不一樣。無論是撕拼、折疊、還是描畫的方法,都是在把這三個內角拼在了一起,轉化成一個平角,我們發現他們的內角和都是180度。
活動5【活動】幾何畫板驗證
引:但我們時間有限,研究的三角形個數有限,是不是任意一個三角形的內角和都是180度呢?我們可以借助幾何畫板來看一看。
師:介紹:計算機能夠幫助我們比較精確地測量出三個角的度數,并計算它們的和。
觀察:老師拉動一個頂點,什么變了?什么沒變?
小結:也就是,無論我們怎么改變三角形的形狀,大小,雖然它的內角在變化,但三個內角和的卻是不變的,都是180度。
活動6【練習】基礎練習
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一個銳角是40°,求另一個角?
3、說一說:在一個三角形中,能有兩個直角嗎?能有兩個鈍角嗎?為什么?
4、拼三角形
師:兩個180°不是360°嗎?
小結:看來,組合以后的圖形還要分清楚哪些是內角。
活動7【練習】拓展練習
(一)拓展練習
今天,我們通過自己的研究發現三角形內角和是180度。那四邊形有沒有內角和呢?它的內角和是多少度?
課件演示。
說說這節課你的收獲?
《三角形的內角和》數學教案范文 篇10
說教材
《三角形的內角和》是人教版小學數學四年級下冊第五單元的內容。“三角形的內角和”是三角形的一個重要性質,學好它有助于學生理解三角形內角之間的關系,也是進一步學習幾何的基礎。本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經具備一定的關于三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內角和”的規律,打下了堅實的基礎。
說學情
一節成功的課,不僅在于對教材的把握,還有對學生的研究。四年級的學生正處于具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統數學課堂模式,采用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。
說教學目標
根據新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:
知識與技能目標:通過量、剪、拼等活動發現、證實三角形內角和是180°,并會應用這一知識解決生活中簡單的實際問題。
過程與方法目標:經歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納的能力。
情感態度價值觀目標:在參與學習的過程中,感受數學的魅力,體驗成功的喜悅,激發學習數學的興趣。
說教學重難點
根據教學目標,我確定了本節課的重點和難點。重點為三角形內角和定理,而三角形內角和定理推理的過程為本節課的難點。
說教法
為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,我將采用啟發式教學法,引導學生利用已有的知識經驗去探索新知,并在探索過程中掌握本節重難點,同時輔之以多媒體教學設備,直觀地呈現教學內容。
我將引導學生采用自主探究,合作交流的方式進行學習,通過動手動腦動口來掌握本節課的教學重難點。
說教學內容
為了更好地完成本節課的教學內容,突出重點突破難點,我設計了以下幾個教學環節:
(一)創設情境,導入新課
為了引入新課,調動學生的學習興趣,一開始上課我便用多媒體播放有關三角形內角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內角和的大小”爆發了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內角和比你大”。直角三角形說“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。根據視頻中三角形的對話,順勢引出題目——三角形的內角和。
多媒體課件展示有關三角形內角和的內容,激發學生深厚的學習興趣和求知欲望,快速的進入學習高潮。
(二)自主探究,感受新知
首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內角的和各是多少度?通過測量,學生可以發現三角形的內角和是180°。
接著我會提出一個問題是不是所有的三角形的內角和都是180°,如何進行驗證你的結論呢?接下來我會讓學生分小組討論,針對學生出現的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。
通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。
最后引導學生出三角形的內角和是180°。
以上教學活動采用讓學生主動探索、小組合作交流的學習方式,使學生充分經歷數學學習的全過程,體現以生為本的教學理念。學生在全程參與中不僅掌握新知發展能力培養的推理能力,又鍛煉學生的語言表達能力和溝通能力,同時讓學生體驗數學與生活的緊密聯系。
(三)鞏固練習,強化知識
我利用小學生好勝心強的特點,以闖關的形式將課本的習題展現在多媒體上來鞏固本節課所學的知識,這樣設計能增加數學的趣味性,激發學生的學習興趣,并查看他們知識的掌握情況。
(四)課堂
我將此環節分為兩部分。第一部分是以學生為主體的知識性,讓學生暢談本節課的感受和收獲,及時了解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性,我會對學生的表現予以表揚和激勵,激發學生的學習興趣,增強學習自信心。
(五)布置作業
針對學生的年齡特點,我會讓學生在課下和家長交流今天的收獲和感受,從而讓家長了解學生在校的學習情況,并促進學生與家長的溝通。
說板書設計
一個好的板書應該是簡潔明了整潔美觀,重難點突出,能夠對學生理解本節知識有一定的強化作用,因此我的板書是這樣設計的。
《三角形的內角和》數學教案范文 篇11
一、說教材
1、教學內容蘇教版《義務教育六年制小學教科書·數學》四年級下冊第130~131頁。
2、教材簡析
本節課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的。通過學習三角形的內角和使學生學會求三角形中第三個內角的度數的方法,同時讓學生經歷探索、猜想、歸納等過程,發展學生的合情推理能力。
3、教學目標
(1)讓學生探索發現三角形的內角和是180°。
(2)通過動手拼擺等活動提高學生的動手能力和思維能力,感受數學的轉化思想。
(3)進一步發展學生空間觀念。
4、教學重點
探索發現三角形的內角和是180°。
5、教具準備
多媒體課件
6、學具準備
每人準備幾個不同類型的三角形。
二、說教法、學法
新課程明確倡導動手實踐、自主探究、合作交流的學習方式。這就要求教師的角色,應當從過去知識的傳授者轉變為學生自主性、探究性、合作性學習活動的設計者和組織者。在教學過程中,我給學生設置了一個開放的、富有挑戰性的問題情境,讓學生獨立、自主地去探究驗證,通過實驗、操作、交流等活動,獲得知識與能力,掌握解決問題的方法,獲得情感體驗。
三、說教學過程
(一)猜角設疑,揭示課題我們來做個游戲叫“猜角”。請同學們拿起桌子上量好角角度的三角形。你只要報出三角形中任意兩個角的度數,我就能猜出你第三個角的度數。想信嗎?(不相信),下面我們來試一試。(師生猜角活動。)師:你想知道老師是怎么猜的嗎?其中的奧秘就在今天我們要探索的知識。(板書:“的內角和”并齊讀課題)[設計意圖]在教學中激勵學生展開積極的思維活動。先創設猜角的游戲情境,讓學生對三角形三個角的度數關系產生好奇,引發學生的探究欲。通過本節課的學習,你有什么收獲?你還有什么問題嗎?
《三角形的內角和》數學教案范文 篇12
一、說教材
說課內容:人教版義務教育課程標準實驗教科書數學第八冊第85頁例5——三角形的內角和。
“三角形的內角和”是三角形的一個重要性質。它有助于學生理解三角形的三個內角之間的關系,是掌握多邊形內角和及解決其他實際問題的基礎,因此,掌握三角形的內角和是180度這一規律對學生的后繼學習具有重要意義。在此之前,學生已經掌握了三角形的概念、分類,熟悉了銳角、直角、鈍角、平角這些角的知識,也可能有部分學生已經知道三角形的內角和是180°,但“知其然而不知其所以然”。所以本課的重點不在于了解,而在于驗證和應用,同時發展學生的空間觀念和思維能力、解決問題的能力。
(一)教學目標
1、知道三角形的內角和等于180°,能運用這一規律進行有關的計算。
2、通過觀察、操作和實驗探索等活動,發展學生的空間觀念,培養學生的思維能力。
3、經歷三角形的內角和等于180°這一知識的導出過程,學會學習幾何知識的方法和科學探究的方法,體驗數學學習的成功。
(二)教學重點
讓學生經歷三角形的內角和的導出過程,能運用這一規律進行有關的計算。
(三)教學難點
驗證三角形的內角和等于180°。
二、說教法和學法
“要讓學生動手做科學,而不是用耳朵聽科學”是新課標的一個重要理念。在本課的設計上我著力通過引導學生經歷猜想、實驗、驗證、歸納、運用、拓展等過程,牢固掌握新知。具體的策略是:
(一)創設問題情景,激發學生學習興趣
通過用一個富有趣味性的動畫情境,讓學生在愉悅的對話中復習舊知,激發興趣,調動他們探索的愿望。
(二)猜想、實驗、驗證,經歷知識的形成過程
為了使學生自主探究發現三角形的內角和是180°,我安排了兩個環節,一是猜測三角形的內角和大約是180°,二是讓學生通過算一算、拼一拼、折一折等方法驗證這一結論。
(三)練習層次分明,呈現方式多樣,夯實學生雙基。
三、說教學程序設計
依據以上的分析,我的教學流程大致分為四個步驟。
(一)創設情境,激發興趣,復習導入
“興趣是最好的老師”,營造一個趣味盎然的課堂學習環境,能有效地吸引學生參與學習過程。課開始,通過課件演示向學生提出問題:你們認識這些三角形嗎?(課件閃現角)這是三角形的……?(角)每個三角形有幾個角?這一情景巧妙地重現知識,改變了復習的方式,再引出三角形的“內角”及“內角和”的概念,為學生進一步探究三角形的內角和掃除了障礙。接著安排猜角的游戲,讓學生拿出課前準備的銳角、直角、鈍角三角形,報出其中兩個角的度數,老師馬上報出第三個角的度數,并做好板書記錄。在好奇心的驅動下,學生很快可以進入憤悱狀態,教師便可趁此導入新課并板書課題:三角形的內角和
板書:三角形∠1∠2∠3內角和30°40°110°70°80°30°90°75°15°
(二)自主探究,操作驗證
讓學生做數學就要讓學生帶著問題,動手、動口、動腦,調動多種感官參與數學學習活動,在活動中獲得知識。教學中我重視留給學生充分進行自主探索和交流的時間和空間,讓學生經歷猜想——驗證的過程,在操作、探索中發現,形成結論。
1、猜想
首先我會向學生提出:“請你仔細觀察這個表格,你發現了什么?”讓學生自主發現三角形的內角和是1800這一規律。
2、驗證
然后鼓勵他們:“你發現的這個結論是不是正確的呢?你能不能想辦法驗證?”恰當的提問放飛了學生的思維。學生經過獨立思考與合作交流,預計能反饋出計算、拼、折等幾種驗證的方法。教師在集中反饋時必須向學生明確以下幾點:
(1)用計算的方法,可能會因為測量有誤差而導致計算的結果有誤差。完成板書。
三角形∠1∠2∠3內角和30°40°110°180°70°80°30°180°90°75°15°180°
(2)用拼一拼的方法:要注意為每個內角注上編號再拼,防止搞錯,同時借助課件加以說明。
(3)用折一折的方法:要注意第一步折的折痕要和底邊平行,而且是三角形的中位線。并用課件演示。
3、概括結論并板書:三角形的內角和是180°,然后指導學生看書質疑,并追問:“如果知道三角形的其中兩個角的度數,怎樣求第三個角度數?”以強化結論的運用。
(三)鞏固運用,夯實雙基
為了使學生更好地鞏固和應用這一結論,我設計了以下的題組:(課件展示)
1、猜一猜
猜一猜小動物背后藏著的角的度數嗎?
你知道這個游戲的秘密嗎?
這一題是用圖示的方法,直接口算出三角形的第3個角的度數。
2、書本第85頁的做一做
在一個三角形中,∠1=140°,∠3=25°,求∠2的度數。
第二題是用文字的呈現方式,讓學生計算出三角形的第三個角的度數。這道題我板書在黑板上,目的是突出解題的規范。
3、判斷、改錯
說明利用三角形內角和可以檢測三角形的角的量度結果。
4、書本第88頁的第9題
這一題是解決特殊三角形的角的計算問題。
5、書本第88頁的第10題
第5題是運用“三角形的內角和是180°”這一結論解決生活中的實際問題。
這一題組注意結合學生的認知規律,具有較強的針對性和層次性,注意到呈現方式的多樣性,讓學生從“會”過渡到“熟”,從“熟”過渡到“活”。
(四)反饋,拓展延伸
課末,我會讓學生結合板書,回顧本節課所學的知識,引導學生對從練習中反饋出來的一些易錯、易混的知識加以辨析、強調,進一步加深學生對新學知識與技能的理解與掌握。
最后再出示兩道拓展性練習題:
1、拓展延伸
幫角找朋友:每組卡片中,哪三個角可以組成三角形?
2、思考題:
根據三角形的內角和是180°,你能求出下面圖形的內角和嗎?
引導學生通過解決這些拓展性的練習,滲透數學的化歸,再一次強化對學習數學的方法的認識。
通過設計多層次的練習,放緩了新知的坡度,既有基本練習,鞏固練習,也有發展性練習,努力體現不同層次的學生達到不同的教學目標。同時注意改變練習的呈現方式,使學生在輕松愉悅的氣氛中學會新知,形成技能。
板書設計:三角形的內角和
《三角形的內角和》數學教案范文 篇13
本節微課視頻是蘇教版數學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎。《三角形的內角和》是三角形的一個重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數,知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規律,從而進一步發展學生的空間觀念,提高學生的自主學習能力和推理能力。
下面就具體談談微課的教學設計:
一、 教學目標
1、通過測量、轉化、觀察和比較等活動探索發現并驗證“三角形的內角和是180度”的規律,并且能利用這一結論解決求三角形中未知角的度數等實際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養學生的聯想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。
3、使學生通過操作的過程獲得發現規律的喜悅,獲得成就感,從而激發學生積極主動學習數學的興趣。
二、 教學重點和難點
重點:讓學生親自驗證并總結出三角形的內角和是180度的結論
難點:對不同驗證方法的理解和掌握。
三、 教學過程
(一)質疑——發現問題,提出問題
出示學生熟悉的一副三角尺,讓學生說說每塊三角尺中各個內角的度數。試著計算每塊三角尺的三個內角的度數加起來的和是多少度?
交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?
引導學生得出三角尺的三個內角的度數和是180度。
提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)
你有什么辦法驗證這一結論呢?(動手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測量三個內角的度數,再求和。(提示存在誤差,但三個內角的和都在180度左右)
方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。
啟發:直角三角形的內角和是180度,這一結論讓你聯想到了什么?你能提出什么新的數學問題呢?
引導:從直角三角形的內角和聯想到所有三角形的內角和,提出問題:所有三角形的內角和都是180度嗎?
(二)探究——分析問題,解決問題
出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
引導:直角三角形的內角和是180度了,由此我們聯想到銳角三角形和鈍角三角形的內角和也有可能是180度。
提問:你有什么辦法來驗證這一猜想呢?
拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發現規律。
方法一:可以像上面那樣先測量每個三角形的三個內角的度數,再計算出它們的和,看看能發現什么規律。學生測量計算,教師巡視指導。
引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發現其中的規律。
方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發現拼成了一個平角,是180度。
方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發現拼成一個平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。
(三)歸納——獲得結論
交流:回顧以上3個三角形的內角和的探索過程,你發現了什么規律?
總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。
(四)拓展——鞏固練習
1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?
2、在一個三角形中,根據兩個內角的度數,求第三個內角的度數?
《三角形的內角和》數學教案范文 篇14
尊敬的老師:
一、教學目標
課程標準這樣描述:通過觀察、操作了解三角形內角和是180。
分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助于學生理解三角形的三個內角之間的關系,也是進一步學習其他圖形內角和的基礎,同時為初中進一步論證做好準備。
課前我對學情進行了分析:
1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特征及其分類,由于學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。
2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。
通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:
1、通過量、拼、折、剪等方法探索和發現三角形的內角和等于180°并會應用這一規律解決實際的問題。
2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
二、設計
針對這一目標的完成,我設計了一下方式:
1、交流式:通過師生、生生對話交流,在交流中對學生進行。
2、表現性:通過小組討論表現、學生回答問題情況,適當對學生進行點撥。
3、操作反應:通過學生在研究三角形內角和過程中的測量、簡拼、折等活動對學生進行
題目
1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
檢測學習目標1的掌握情況。
2、通過小組、同桌合作、匯報,教師引導學生理解本節課所蘊含的學習方法,檢測學習目標2的掌握情況
三、教具學具準備
教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
學具準備:三角板、量角器.
四、教學過程
這節課的教學我通過一下四個環節完成。
1、觀察猜測,引入新知;
2、動手操作,探索新知;
3、鞏固新知,拓展應用;
4、延伸知識。
第一環節,觀察猜測,引入新知。
由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一一看。課件演示:
(1)鈍角變小,另外兩個角怎樣變?
(2)鈍角變大,另外兩個角怎樣變?
(3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。
這只是我們的猜測,(板書:猜測)數學是要用事實說話的,這節課我們就來學習三角形的內角和。(板書課題)這樣由三種變化的三角形引入新課,激發學生興趣的同時為后面的學習做準備
第二環節,動手操作,探索新知。
1、直角三角形的內角和。
(一)直角三角形內角和
先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
這個環節引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。
(二)、銳角三角形、鈍角三角形的內角和
課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。
這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
第三環節、鞏固新知,拓展應用
用三角形的這一特性來解決一些問題
1、基本練習
通過做一做和說一說這兩個練習來強化學生認知。
2、拓展練習
拼一拼、想一想
(1)兩個三角形拼成大三角形,說出大三角形的內角和
(2)一個三角形去掉一部分
引導學生發現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。
(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?
(4)如果變成五邊形,你還能求出他的度數嗎?
充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等于180度。在此基礎上滲透數學的“轉化”和“分割”提高學生靈活運用和推理等各方面的能力。
第四環節、延伸知識
通過這個環節讓學生談一談自己的收獲或感受,對本節課的知識進行拓展升華。
五、板書設計:
三角形的內角和
猜測(180度)
驗證:測量、撕拼、折疊結論
三角形的內角和是180度
我的板書簡明扼要,體現了本節課的重點,而且是對本節課學習方法的一個回顧。