平行四邊形的判定
條件(題設):連接兩邊中點得到中位線;結(jié)論:有兩個,一個表明中位線與第三邊的位置關系,另一個表明中位線與第三邊的數(shù)量關系(在應用時,可根據(jù)需要選用其中的結(jié)論);作用:在已知兩邊中點的條件下,證明線段的平行關系及線段的倍分關系.(4)可通過題組練習,讓學生掌握其性質(zhì).三、例題的意圖分析 例1是教材p98的例4,這是三角形中位線性質(zhì)的證明題,教材采用的是先證明后引出概念與性質(zhì)的方法,它一是要練習鞏固平行四邊形的性質(zhì)與判定,二是為了降低難度,因此教師們在教學中要把握好度.建議講完例1,引出三角形中位線的概念和性質(zhì)后,馬上做一組練習,以鞏固三角形中位線的性質(zhì),然后再講例2.例2是一道補充題,選自老教材的一個例題,它是三角形中位線性質(zhì)與平行四邊形的判定的混合應用題,題型挺好,添加輔助線的方法也很巧,結(jié)論以后也會經(jīng)常用到,可根據(jù)學生情況適當?shù)倪x講例2.教學中,要把輔助線的添加方法講清楚,可以借助與多媒體或教具.四、課堂引入1. 平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?2. 你能說說平行四邊形性質(zhì)與判定的用途嗎?(答:平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質(zhì)去解決某些問題.例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.)3.創(chuàng)設情境實驗:請同學們思考:將任意一個三角形分成四個全等的三角形,你是如何切割的?(答案如圖)圖中有幾個平行四邊形?你是如何判斷的?五、例習題分析
例1(教材p98例4) 如圖,點d、e、分別為△abc邊ab、ac的中點,求證:de∥bc且de= bc. 分析:所證明的結(jié)論既有平行關系,又有數(shù)量關系,聯(lián)想已學過的知識,可以把要證明的內(nèi)容轉(zhuǎn)化到一個平行四邊形中,利用平行四邊形的對邊平行且相等的性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當?shù)妮o助線來構(gòu)造平行四邊形. 方法1:如圖(1),延長de到f,使ef=de,連接cf,由△ade≌△cfe,可得ad∥fc,且ad=fc,因此有bd∥fc,bd=fc,所以四邊形bcfd是平行四邊形.所以df∥bc,df=bc,因為de= df,所以de∥bc且de= bc.(也可以過點c作cf∥ab交de的延長線于f點,證明方法與上面大體相同)
方法2:如圖(2),延長de到f,使ef=de,連接cf、cd和af,又ae=ec,所以四邊形adcf是平行四邊形.所以ad∥fc,且ad=fc.因為ad=bd,所以bd∥fc,且bd=fc.所以四邊形adcf是平行四邊形.所以df∥bc,且df=bc,因為de= df,所以de∥bc且de= bc.定義:連接三角形兩邊中點的線段叫做三角形的中位線.【思考】:(1)想一想:①一個三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別? (2)三角形的中位線與第三邊有怎樣的關系? (答:(1)一個三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點不同.中位線是中點與中點的連線;中線是頂點與對邊中點的連線.(2)三角形的中位線與第三邊的關系:三角形的中位線平行與第三邊,且等于第三邊的一半.)