復(fù)數(shù)的有關(guān)概念
教學(xué)目標(biāo)(1)把握復(fù)數(shù)的有關(guān)概念,如虛數(shù)、純虛數(shù)、復(fù)數(shù)的實部與虛部、兩復(fù)數(shù)相等、復(fù)平面、實軸、虛軸、共軛復(fù)數(shù)、共軛虛數(shù)的概念。
(2)正確對復(fù)數(shù)進(jìn)行分類,把握數(shù)集之間的從屬關(guān)系;
(3)理解復(fù)數(shù)的幾何意義,初步把握復(fù)數(shù)集c和復(fù)平面內(nèi)所有的點所成的集合之間的一一對應(yīng)關(guān)系。
(4)培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,練習(xí)學(xué)生條理的邏輯思維能力.
教學(xué)建議
(一)教材分析
1、知識結(jié)構(gòu)
本節(jié)首先介紹了復(fù)數(shù)的有關(guān)概念,然后指出復(fù)數(shù)相等的充要條件,接著介紹了有關(guān)復(fù)數(shù)的幾何表示,最后指出了有關(guān)共軛復(fù)數(shù)的概念.
2、重點、難點分析
(1)正確復(fù)數(shù)的實部與虛部
對于復(fù)數(shù) ,實部是 ,虛部是 .注重在說復(fù)數(shù) 時,一定有 ,否則,不能說實部是 ,虛部是 ,復(fù)數(shù)的實部和虛部都是實數(shù)。
說明:對于復(fù)數(shù)的定義,非凡要抓住 這一標(biāo)準(zhǔn)形式以及 是實數(shù)這一概念,這對于解有關(guān)復(fù)數(shù)的問題將有很大的幫助。
(2)正確地對復(fù)數(shù)進(jìn)行分類,弄清數(shù)集之間的關(guān)系
分類要求不重復(fù)、不遺漏,同一級分類標(biāo)準(zhǔn)要統(tǒng)一。根據(jù)上述原則,復(fù)數(shù)集的分類如下:
注重分清復(fù)數(shù)分類中的界限:
①設(shè) ,則 為實數(shù)
② 為虛數(shù)
③ 且 。
④ 為純虛數(shù) 且
(3)不能亂用復(fù)數(shù)相等的條件解題.用復(fù)數(shù)相等的條件要注重:
①化為復(fù)數(shù)的標(biāo)準(zhǔn)形式
②實部、虛部中的字母為實數(shù),即
(4)在講復(fù)數(shù)集與復(fù)平面內(nèi)所有點所成的集合一一對應(yīng)時,要注重:
①任何一個復(fù)數(shù) 都可以由一個有序?qū)崝?shù)對( )唯一確定.這就是說,復(fù)數(shù)的實質(zhì)是有序?qū)崝?shù)對.一些書上就是把實數(shù)對( )叫做復(fù)數(shù)的.
②復(fù)數(shù) 用復(fù)平面內(nèi)的點z( )表示.復(fù)平面內(nèi)的點z的坐標(biāo)是( ),而不是( ),也就是說,復(fù)平面內(nèi)的縱坐標(biāo)軸上的單位長度是1,而不是 .由于 =0+1· ,所以用復(fù)平面內(nèi)的點(0,1)表示 時,這點與原點的距離是1,等于縱軸上的單位長度.這就是說,當(dāng)我們把縱軸上的點(0,1)標(biāo)上虛數(shù) 時,不能以為這一點到原點的距離就是虛數(shù)單位 ,或者 就是縱軸的單位長度.
③當(dāng) 時,對任何 , 是純虛數(shù),所以縱軸上的點( )( )都是表示純虛數(shù).但當(dāng) 時, 是實數(shù).所以,縱軸去掉原點后稱為虛軸.
由此可見,復(fù)平面(也叫高斯平面)與一般的坐標(biāo)平面(也叫笛卡兒平面)的區(qū)別就是復(fù)平面的虛軸不包括原點,而一般坐標(biāo)平面的原點是橫、縱坐標(biāo)軸的公共點.
④復(fù)數(shù)z=a+bi中的z,書寫時小寫,復(fù)平面內(nèi)點z(a,b)中的z,書寫時大寫.要學(xué)生注重.
(5)關(guān)于共軛復(fù)數(shù)的概念
設(shè) ,則 ,即 與 的實部相等,虛部互為相反數(shù)(不能認(rèn)為 與 或 是共軛復(fù)數(shù)).
教師可以提一下當(dāng) 時的非凡情況,即實軸上的點關(guān)于實軸本身對稱,例如:5和-5也是互為共軛復(fù)數(shù).當(dāng) 時, 與 互為共軛虛數(shù).可見,共軛虛數(shù)是共軛復(fù)數(shù)的非凡情行.