中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數(shù)學教案 > 高中數(shù)學教案 > 高二數(shù)學教案 > 曲線和方程(通用11篇)

曲線和方程

發(fā)布時間:2022-11-15

曲線和方程(通用11篇)

曲線和方程 篇1

  教學目標 

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標 

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程 

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計 

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇2

  教學目標

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標:

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程:

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計】

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇3

  教學目標

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和把握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注重強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的預備.

  (3)無論是判定、證實,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注重轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中把握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標:

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步把握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程:

  引入

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  問題

  如何根據(jù)已知條件,求出曲線的方程.

  實例分析

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證實嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證實,證實的依據(jù)就是定義中的兩條).

  證實:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證實完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證實(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,假如去掉腳標,這不就是所求方程 嗎?可見,這個證實過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證實,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  概括總結(jié)通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證實或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼?用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證實以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;假如求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證實可省略,不過非凡情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  動畫演示用幾何畫板演示曲線生成的過程和外形,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  練習鞏固

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  小結(jié)師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注重什么?

  作業(yè)課本第72頁練習1,2,3;

  板書設計

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè):

曲線和方程 篇4

  教學目標

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標:

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程:

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計】

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇5

  教學目標 

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標 

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程 

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計 

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇6

  教學目標 

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標 

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程 

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計 

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇7

  教學目標 

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設  表示曲線  上適合某種條件的點  的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式  數(shù)學符號語言中含動點坐標 , 的代數(shù)方程  簡化了的  的代數(shù)方程 

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標 

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程 

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設  、  兩點的坐標是  、(3,7),求線段  的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設  是線段  的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標  是方程  的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點  的坐標  是方程①的任意一解,則

  到  、  的距離分別為

  所以  ,即點  在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設  是線段 的垂直平分線上任意一點,最后得到式子  ,如果去掉腳標,這不就是所求方程  嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設  是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù)  求點  的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如  表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點  的集合

  ;

  (3)用坐標表示條件  ,列出方程  ;

  (4)化方程  為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到  點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點  是曲線上任意一點,  軸,垂足是  (如圖2),那么點  屬于集合

  由距離公式,點  適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以  ,雖然原點  的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為   ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為  、  、  ,且有  ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設  、  的坐標為  、  ,則 的坐標為  , 的坐標為  .

  根據(jù)條件  ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè) 】課本第72頁練習1,2,3;

  【板書設計 

  §7.6 求曲線的方程

  坐標法:

  解析幾何:

  基本問題:

  (1)

  (2)

  例1:

  例2:

  求曲線方程的步驟:

  例3

  練習:

  小結(jié):

  作業(yè) :

曲線和方程 篇8

  曲線和方程

  教學目標

  (1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.

  (2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.

  (3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.

  (4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.

  (5)進一步理解數(shù)形結(jié)合的思想方法.

  教學建議

  教材分析

  (1)知識結(jié)構(gòu)

  曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.

  (2)重點、難點分析

  ①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.

  ②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.

  教法建議

  (1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.

  (2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.

  (3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.

  (4)從集合與對應的觀點可以看得更清楚:

  設 表示曲線 上適合某種條件的點 的集合;

  表示二元方程的解對應的點的坐標的集合.

  可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

  (5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.

  這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即

  文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程

  由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”

  (6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.

  教學設計示例

  課題:求曲線的方程(第一課時)

  教學目標:

  (1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

  (2)進一步理解曲線的方程和方程的曲線.

  (3)初步掌握求曲線方程的方法.

  (4)通過本節(jié)內(nèi)容的教學,培養(yǎng)學生分析問題和轉(zhuǎn)化的能力.

  教學重點、難點:求曲線的方程.

  教學用具:計算機.

  教學方法:啟發(fā)引導法,討論法.

  教學過程:

  【引入】

  1.提問:什么是曲線的方程和方程的曲線.

  學生思考并回答.教師強調(diào).

  2.坐標法和解析幾何的意義、基本問題.

  對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

  (1)根據(jù)已知條件,求出表示平面曲線的方程.

  (2)通過方程,研究平面曲線的性質(zhì).

  事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

  【問題】

  如何根據(jù)已知條件,求出曲線的方程.

  【實例分析】

  例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

  首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

  解法一:易求線段 的中點坐標為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

  ①

  分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

  (通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

  證明:(1)曲線上的點的坐標都是這個方程的解.

  設 是線段 的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點 的坐標 是方程 的解.

  (2)以這個方程的解為坐標的點都是曲線上的點.

  設點 的坐標 是方程①的任意一解,則

  到 、 的距離分別為

  所以 ,即點 在直線 上.

  綜合(1)、(2),①是所求直線的方程.

  至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

  讓我們用這個方法試解如下問題:

  例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

  分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

  求解過程略.

  【概括總結(jié)】通過學生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

  (1)建立適當?shù)淖鴺讼担糜行驅(qū)崝?shù)對例如 表示曲線上任意一點 的坐標;

  (2)寫出適合條件 的點 的集合

  ;

  (3)用坐標表示條件 ,列出方程 ;

  (4)化方程 為最簡形式;

  (5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

  一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

  上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

  下面再看一個問題:

  例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

  解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

  由距離公式,點 適合的條件可表示為

  ①

  將①式 移項后再兩邊平方,得

  化簡得

  由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

  【練習鞏固】

  題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

  分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

  根據(jù)條件 ,代入坐標可得

  化簡得

  ①

  由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

  (1)解析幾何研究研究問題的方法是什么?

  (2)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

  【作業(yè)】課本第72頁練習1,2,3;

曲線和方程 篇9

  以上是第一范文網(wǎng)小編為大家整理的高中數(shù)學《曲線和方程》說課稿,希望對大家有所幫助。

  各位領(lǐng)導、專家、同仁:你們好!

  我是廣安市樂善中學的數(shù)學教師蔣永華。我說課的內(nèi)容是“曲線和方程”。下面我從教材分析、教學方法、學法指導、教學程序、板書設計以及評價六個方面來匯報對教材的鉆研情況和本節(jié)課的教學設想。懇請在座的專家、同仁批評指正。

  一、關(guān)于教材分析

  1、教材的地位和作用

  “曲線和方程”是高中數(shù)學第二冊(上)第七章《直線和圓的方程》的重點內(nèi)容之一,是在介紹了“直線的方程”之后,對一般曲線(也包括直線)與二元方程的關(guān)系作進一步的研究。這部分內(nèi)容從理論上揭示了幾何中的“形”與代數(shù)中的“數(shù)”相統(tǒng)一的關(guān)系,為“形”與“數(shù)”的相互轉(zhuǎn)化開辟了途徑,同時也體現(xiàn)了解析幾何的基本思想,為解析幾何的教學奠定了一個理論基礎。

  2、教學內(nèi)容的選擇和處理

  本節(jié)教材主要講解曲線的方程和方程的曲線、坐標法、解析幾何等概念,討論怎樣求曲線的方程以及曲線的交點等問題。共分四課時完成,這是第一課時。此課時的主要內(nèi)容是建立“曲線的方程”和“方程的曲線”這兩個概念,并對概念進行初步運用。我在處理教材時,不拘泥于教材,敢于大膽進行調(diào)整。主要體現(xiàn)在對曲線的方程和方程的曲線的定義進行歸納上,通過構(gòu)造反例,引導學生進行觀察、討論、分析、正反對比,逐步揭示其內(nèi)涵,然后在此基礎上歸納定義;再一點就是在得出定義之后,引導學生用集合觀點來理解概念。

  3、教學目標的確定

  根據(jù)教學大綱的要求以及本節(jié)教材的地位和作用,結(jié)合高二學生的認知特點,我認為,通過本節(jié)課的教學,應使學生理解曲線和方程的概念;會用定義來判斷點是否在方程的曲線上、證明曲線的方程;培養(yǎng)學生分析、判斷、歸納的邏輯思維能力,滲透數(shù)形結(jié)合的數(shù)學思想;并借用曲線與方程的關(guān)系進行辯證唯物主義觀點的教育;通過對問題的不斷探討,培養(yǎng)學生勇于探索的精神。

  4、關(guān)于教學重點、難點和關(guān)鍵

  由于曲線和方程的概念體現(xiàn)了解析幾何的基本思想,學生只有透徹理解了這個概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門之徑。因此,我把曲線和方程的概念確定為本節(jié)課的教學重點。另外,由于曲線和方程的概念比較抽象,加之剛剛進入高二的學生抽象思維能力還不是很強,因此,他們對曲線和方程關(guān)系的“純粹性”與“完備性”不易理解,弄不清它們之間的區(qū)別與聯(lián)系,易產(chǎn)生“為什么要規(guī)定這樣兩個關(guān)系”的疑問。所以,對概念的理解,尤其是對“兩個關(guān)系”的認識是本節(jié)課的難點。

  如何突破這一難點呢?由于學生在學習本節(jié)之前,已經(jīng)有了用方程表示幾何圖形的感性認識(比如用方程表示直線、拋物線、雙曲線等)。因此,突破這一難點的關(guān)鍵在于利用學生積累的這些感性認識,通過分析反例,來揭示“兩個關(guān)系”中缺少任何一個都將破壞曲線與方程的統(tǒng)一性(即擴大概念的外延)。

  二、關(guān)于教學方法與教學手段的選用

  根據(jù)本節(jié)課的教學內(nèi)容和學生的實際水平,我采用的是引導發(fā)現(xiàn)法和CAI輔助教學。

  (1)引導發(fā)現(xiàn)法是通過教師的引導、啟發(fā),調(diào)動學生參與教學活動的積極性,充分發(fā)揮教師的主導作用和學生的主體作用。在教學中通過設置疑問,創(chuàng)造出思維情境,然后引導學生動腦、動手、動口,使學生在開放、民主、和諧的教學氛圍中獲取知識,提高能力,促進思維的發(fā)展。

  (2)借助CAI輔助教學,增大教學的容量和直觀性,增強學習興趣,從而達到提高教學效果和教學質(zhì)量的目的。(這也符合教學論中的直觀性原則和可接受性原則。)

  (3)教具:三角板、多媒體。

  三、關(guān)于學法指導

  古人說得好,“授人以魚,只供一飯;教人以漁,終身受用。”我們在向?qū)W生傳授知識的同時,必須教給他們好的學習方法,讓他們學會學習、享受學習。因此,在本節(jié)課的教學中,引導學生開展“仔細看、動腦想、多交流、細比較、勤練習”的研討式學習,加大學生的參與機會,增強參與意識,讓他們體驗獲取知識的歷程,掌握思考問題的方法,逐漸培養(yǎng)他們“會觀察”、“會類比”、“會分析”、“會歸納”的能力。

  四、關(guān)于教學程序的設計

  首先是“復習引入”。我先引導學生回顧本章第二節(jié)中直線與二元一次方程的關(guān)系,并讓學生指出二者能互相表示時滿足的條件。然后,在此基礎上提出“平面直角坐標系中一般曲線和二元方程之間要建立這樣的對應關(guān)系,也就是能互相完整地表示時,需具備什么樣的條件呢?”從而引出將要學習的課題――曲線和方程。這樣引入課題顯得比較自然,也符合由特殊到一般的思維認知規(guī)律。同時,直線與二元一次方程的關(guān)系也為下面研究一般曲線與二元方程的關(guān)系提供了一個實際模型。(本環(huán)節(jié)用時約分鐘。)

  第二個環(huán)節(jié)“設疑導思”。在課題引出之后,我把剛才引入課題時的問題(即:一個二元方程f(x,y)=0的解與平面直角坐標系中一般的曲線C上的點需滿足什么樣的條件,就可以用方程f(x,y)=0來表示曲線C,同時曲線C也可以來表示這個方程f(x,y)=0?)再次交給學生,讓他們進行思考、討論,然后請學生

  內(nèi)容如下:

  代表發(fā)表意見,我適當?shù)丶袑W生的觀點,并逐步將其歸結(jié)為兩點:①曲線上點的坐標滿足方程f(x,y)=0,②以方程f(x,y)=0的解為坐標點在曲線上(學生用類比的方法和積累的用方程表示曲線的感性認識,是可以猜想出這一條件的),但我對學生的觀點不作評判(這樣就留下了懸念)。這樣設計的意圖在于:此思考題是本節(jié)課的核心問題,在這里提出來是為了給學生一個明確的學習目標;同時,也是為了通過問題給學生營造出思維情境,調(diào)動起他們的思維。給學生留下懸念,是為了激發(fā)他們的學習熱情和求知欲望,從而使他們主動參與到后面的教學活動中來。(本環(huán)節(jié)用時約分鐘。)

  接下來我就引導他們進行“實例探究”。首先用電腦投影例題1,讓學生對例題進行分析、討論,并動手畫圖,然后口答二者的關(guān)系。最后,由我給予訂正,同時用電腦顯示相關(guān)結(jié)果。設計此例的目的是讓學生從正面認識曲線和方程互相完整表示時所具有的兩個關(guān)系,即“(1)如果點M(x0,y0)是C1上的點,那么(x0,y0)一定是方程的解;反過來,(2)如果(x0,y0)方程的解,那么以(x0,y0)為坐標的點必在C1上。”顯然,它滿足剛才學生自己所提出的兩個條件。(也就是拋物線上的點與方程的解形成了一一對應的關(guān)系。)

  盡管學生知道了曲線和方程互相完整表示時所具有的這樣兩個關(guān)系,但學生此時可能還會存有這樣的疑問:“曲線與方程互相完整表示時一定要滿足這樣兩個關(guān)系嗎?缺少一個會怎樣呢?”學生的這一疑問也正是本節(jié)課的教學難點所在。為了突破這一難點,我在例1的基礎上分別構(gòu)造出兩個反例,一個是在原有拋物線上“長出”一部分,即“曲線多了”的情形,另一個是將原來的拋物線“剪去”一段,即“曲線少了”的情形。接著在教師的引導下,讓學生分別對兩個反例進行充分地觀察、分析、討論(當然,這里要給學生留足時間)。通過這些認知活動的開展,學生能夠發(fā)現(xiàn):問題1中(反例1),雖然以方程的解為坐標的點都在曲線C2上,但曲線C2上的點的坐標不全滿足方程(可舉例驗證),也就是C2上“混進”了其坐標不是方程解的點,從而導致曲線C2上的點和方程解不是一一對應的關(guān)系,它們不能互相完整地表示,即“曲線多了”。此時,它滿足同學自己提出的“兩個關(guān)系”中②不滿足①。問題2(反例2)中,曲線C3上的點的坐標都滿足方程,但以方程的解為坐標的點不全在曲線C3上(也可舉例說明),也就是曲線上“缺漏”其坐標是方程解的點,同樣導致曲線C3上的點與方程的解也不是一一對應的關(guān)系。顯然曲線C3與方程不能互相完整地表示,即“曲線少了”。此時,它滿足“兩個關(guān)系”中的①不滿足②。由此,學生可以得出結(jié)論:“兩個關(guān)系”中缺少任何一個,曲線和方程都不能互相完整地表示。這樣就使本節(jié)課的教學難點被突破了。這里對反例的設置是在例1的基礎上進行演化的,沒有另外構(gòu)造反例,目的是讓學生能更好地進行正反對比,從而易于發(fā)現(xiàn)問題,形成深刻的印象。這一環(huán)節(jié)的教學是在教師的引導下采用研討的方式進行的,這樣處理有助于調(diào)動學生學習積極性,增強課堂參與意識,培養(yǎng)學生的觀察能力和邏輯思維能力。(本環(huán)節(jié)用時約分鐘)

  通過上一環(huán)節(jié)的實例探究和反例分析,實際上已經(jīng)揭示了曲線和方程對應關(guān)系的本質(zhì)屬性,但學生對此還缺乏一種邏輯上的準確表述。因此,接下來就是引導學生在剛才的探討基礎上“歸納定義”。首先向?qū)W生提出這樣的問題:如果將例1中能完整表示曲線的這個方程稱為“曲線的方程”,那么我們該如何定義“曲線的方程”?這時可引導學生思考:為了避免兩個反例中曲線與方程關(guān)系的“不完整性”,我們應該作出怎樣的限制?隨著這一問題的解答,自然也就得出了定義。事實上,這一環(huán)節(jié)是在暴露定義產(chǎn)生的過程,目的是讓學生從中學到處理數(shù)學問題的思想和方法,培養(yǎng)學生的數(shù)學素質(zhì)。另外,在歸納出定義后,又引導學生用集合對定義進行重新表述,這樣可以使學生對曲線與方程的關(guān)系進行再認識,從而強化對概念的理解。(本環(huán)節(jié)用時約分鐘)

  接下來,我給學生準備了一道練習題,通過練習一方面可以加深學生對定義的理解;另一方面也旨在了解學生對概念的掌握情況,以便調(diào)節(jié)后面的教學節(jié)奏。同時,通過兩個引申提問(一個是怎樣修改圖形,可使曲線是方程的曲線,另一個是如何修改方程可使方程是曲線的方程。),對題目作進一步的探討。這樣有利于培養(yǎng)學生的發(fā)散思維,促使良好思維習慣的形成。(練習用時約分鐘)

  處理完練習以后,又引導學生對概念進行初步運用(目的還是為了加強對概念的理解)。首先我將例2、例3分別投影在屏幕上,然后引導學生分析解題思路,并根據(jù)學生的分析進行補充講解,最后師生共同完成解答。對例3的證明在理清思路后,由我將證明過程板書出來,目的是給學生起一個示范作用,讓學生掌握正確的書寫格式,培養(yǎng)學生嚴謹推理的習慣。另外,在解完例題之后,又引導學生對解題過程進行回顧,并歸納出具有一般性的結(jié)論,這樣既有利于解題技能的形成,又可培養(yǎng)學生良好的解題習慣。(本環(huán)節(jié)用時約分鐘)

  課堂小結(jié)我是引導學生從知識內(nèi)容和思想方法兩個方面進行小結(jié)的。通過小結(jié)使學生對本節(jié)課的知識結(jié)構(gòu)有一個清晰的認識。在小結(jié)時不僅概括所學知識,而且還對所用到的數(shù)學方法和涉及的數(shù)學思想也進行歸納,這樣既可以使學生完成知識建構(gòu),又可以培養(yǎng)其能力。(用時約分鐘)

  最后布置作業(yè)。所布置的作業(yè)都是緊緊圍繞著“曲線和方程”的概念及運用。通過作業(yè)來反饋知識掌握效果,鞏固所學知識,強化基本技能的訓練,培養(yǎng)學生良好的學習習慣和品質(zhì)。另外,設計選作題是為了給學有余力的學生留出自由發(fā)展的空間。(用時約分鐘)

  五、關(guān)于板書設計

  我將板書設計為“提綱式”。這樣設計主要是力求重點突出,能加深學生對重點知識的理解和掌握,便于記憶,從而提高教學效果。

  六、關(guān)于評價

  在授課過程中,我根據(jù)學生對課堂提問及例習題的解答情況,及時調(diào)節(jié)課堂節(jié)奏,“易”則可加快,“難”則應放慢速度,并借用富有啟發(fā)性的、階梯性的提問對學生進行思維引導。

  課后,我將通過統(tǒng)計《課堂練習反饋表》、批改作業(yè)以及與學生談話等方式,來了解學生對“曲線與方程”概念的掌握情況,檢查教學目的的實現(xiàn)程度。同時,根據(jù)收集的這些教學反饋信息來對下一步教學工作作出必要的調(diào)整和改進。另外,通過對作業(yè)的評判和統(tǒng)計課堂練習完成情況,有助于學生認識自我,讓他們獲得成就感,從而增強其自信心,培養(yǎng)學生積極進取的學習態(tài)度。

  以上,我從六個方面闡述了對“曲線和方程”這一節(jié)內(nèi)容的有關(guān)分析和教學設想。不妥之處,敬請各位專家、同仁指正。謝謝大家!

曲線和方程 篇10

  1、對教材地位與作用的認識

  在高中數(shù)學教學中,作為數(shù)學思想應向?qū)W生滲透,強化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價轉(zhuǎn)化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視。“曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題。”曲線與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎,在應用上它是工具,對全部解析幾何的教學有著深遠的影響,另外在高考中也是考察的重點內(nèi)容,尤其是求曲線的方程,學生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學習得入門之路。應該認識到這節(jié)“曲線和方程”得開頭課是解析幾何教學的“重頭戲”!

  2、教學目標的確定及依據(jù)

  (大綱的要求)通過本小節(jié)的學習,要使學生了解解析幾何的基本思想,了解用坐標法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學目標上是這樣設定的:

  1).了解曲線上的點與方程的解之間的一一對應關(guān)系,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡單的判斷與推理;

  2).在形成概念的過程中,培養(yǎng)分析、抽象和概括等思維能力;

  3)會證明已知曲線的方程。

  本節(jié)課的教學目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應在學生的學習行為上,即要求學生能答出曲線與方程間必須滿足的兩個關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區(qū)別。知識的學習與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來辨析“兩個關(guān)系”之間的區(qū)別,從認識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎.

  3、如何突破重難點

  本小節(jié)的重點是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當難度,對學生理解上可能遇到的問題是學生不理解“曲線上的點的坐標都是方程的解”和”“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學生只從字面上死記硬背;有的學生甚至誤以為這兩句話是同義反復。要突破這一點,關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.

  本節(jié)課的難點在于對定義中為什么要規(guī)定兩個關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。

  4、對教學過程的設計

  今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學,具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時講解求曲線的方程一般方法,第三課時為習題課,通過練習來總結(jié)、鞏固和深化本節(jié)知識。如果以為學生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學,這不能不說是一種“舍本逐末”得偏見。

  在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學生所理解,因而教材中從直線開始,多次,重復地闡述,這說明其重要性.同時也說明理解它,掌握它確實需要一個過程.數(shù)學本身是很抽象,把數(shù)學和實際問題相結(jié)合才能激發(fā)學生的學習興趣,真正達到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強化理解→知識應用,反復辨析。

  教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關(guān)系。”學生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認識,在本節(jié)教學中充分發(fā)揮這些感性認識的作用。從人造地球衛(wèi)星運行的軌道等生動形象的實際問題引入,引起學生的興趣和好奇心以及對數(shù)學的應用有了更高的認識,更激發(fā)他們進一步學好數(shù)學的決心。(具體……)提出課題。運用學生熟知的知識,1)求線段ab的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會失去開發(fā)學生思維的機會,影響學生的理解,而且會使教學變得枯燥乏味,抑制了學生學習的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學生對概念表述的嚴格性進行探索,學生自已認識曲線和方程的概念必須要具備的兩個關(guān)系,培養(yǎng)學生分析,歸納問題的能力,自然得出定義。并且把這個關(guān)系板書到黑板上,以示這就是這節(jié)課的重點。為了在重難點有所突破后強化其認識,又用集合相等的概念來解釋曲線和方程的對應關(guān)系,并以此為工具來分析實例,這將有助于學生的理解,有助于學生通其法,知其理。

  然后通過運用與練習,糾正錯誤的認識,促使對概念的正確理解,通過反復重現(xiàn),可以不斷領(lǐng)悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學生正確理解概念,通過解題辨析“兩個關(guān)系”,實現(xiàn)本節(jié)課的教學目標,為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。

  曲線是符合某種條件的點的軌跡,為了下節(jié)課“求曲線的方程”的教學,安排了例3(見課件)證明曲線的方程,增加學生的感性認識,由于教材上有嚴謹?shù)淖C明過程,讓學生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學生獨立思考,閱讀歸納的能力。為了讓學生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習:(略)簡單評講后小結(jié)本課的主要內(nèi)容,進一步強化“曲線和方程”概念中兩個關(guān)系缺一不可,只有符合關(guān)系1)2)才能進行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。

  5、對學生學習活動的引導和組織

  教案的設計與教案的實施往往有一定的距離,本節(jié)課有著概念性強,思維量大,例題與練習題不多的特點,這就決定了整節(jié)課將以學生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學,在具體操作上比較靈活,視學生的具體情況而定,把握學生的思維規(guī)律于數(shù)學思想的基本方法。例如,在概念教學中引導學生看反例,通過正反對比的方法,當學生觀察了例1回答不清為什么,可以舉出幾個點的坐標作檢驗,這就是”從特殊到一般“的方法:或引導學生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學生的認識規(guī)律,學生的認識活動就會順利展開,而且在認知的過程中訓練了探索的能力。強化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學思想方法,完善學生的數(shù)學的結(jié)構(gòu),讓學生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學生多向思維、積極思考,勇于探索,從中培養(yǎng)學生合情推理能力,數(shù)學交流與合作能力以及主動參與的精神。

曲線和方程 篇11

  一、教材分析

  1.教材背景

  作為曲線內(nèi)容學習的開始,“曲線與方程”這一小節(jié)思想性較強,約需三課時,第一課時介紹曲線與方程的概念;第二課時講曲線方程的求法;第三課時側(cè)重對所求方程的檢驗.

  本課為第二課時

  主要內(nèi)容有:解析幾何與坐標法;求曲線方程的方法(直譯法)、步驟及例題探求.

  2.本課地位和作用

  承前啟后,數(shù)形結(jié)合

  曲線和方程,既是直線與方程的自然延伸,又是圓錐曲線學習的必備,是后面平面曲線學習的理論基礎,是解幾中承上啟下的關(guān)鍵章節(jié).

  “曲線”與“方程”是點的軌跡的兩種表現(xiàn)形式.“曲線”是軌跡的幾何形式,“方程”是軌跡的代數(shù)形式;求曲線方程是用方程研究曲線的先導,是解析幾何所要解決的兩大類問題的首要問題.體現(xiàn)了坐標法的本質(zhì)——代數(shù)化處理幾何問題,是數(shù)形結(jié)合的典范.

  后繼性、可探究性

  求曲線方程實質(zhì)上就是求曲線上任意一點(x,y)橫縱坐標間的等量關(guān)系,但曲線軌跡常無法事先預知類型,通過多媒體演示可以生動展現(xiàn)運動變化特點,但如何獲得曲線的方程呢?通過創(chuàng)設情景,激發(fā)學生興趣,充分發(fā)揮其主體地位的作用,學習過程具有較強的探究性.

  同時,本課內(nèi)容又為后面的軌跡探求提供方法的準備,并且以后還會繼續(xù)完善軌跡方程的求解方法.

  數(shù)學建模與示范性作用

  曲線的方程是解析幾何的核心.求曲線方程的過程類似于數(shù)學建模的過程,它貫穿于解析幾何的始終,通過本課例題與變式,要總結(jié)規(guī)律,掌握方法,為后面圓錐曲線等的軌跡探求提供示范.

  數(shù)學的文化價值

  解析幾何的發(fā)明是變量數(shù)學的第一個里程碑,也是近代數(shù)學崛起的兩大標志之一,是較為完整和典型的重大數(shù)學創(chuàng)新史例.解析幾何創(chuàng)始人特別是笛卡兒的事跡和精神——對科學真理和方法的追求、質(zhì)疑的科學精神等都是富有啟發(fā)性和激勵性的教育材料.可以根據(jù)學生實際情況,條件允許時指導學生課后收集相關(guān)資料,通過分析、整理,寫出研究報告.

  3.學情分析

  我所授課班級的學生數(shù)學基礎比較好,思維活躍,在剛剛學習了“曲線的方程和方程的曲線”后,學生對這種必須同時具備純粹性和完備性的概念有了初步的認識,對用代數(shù)方法研究幾何問題的科學性、準確性和優(yōu)越性等已有了初步了解,對具體(平面)圖形與方程間能否對應、怎樣對應的學習已經(jīng)有了自然的求知欲望.

  二、目標分析

  1.教學目標

  知識技能目標

  理解坐標法的作用及意義.

  掌握求曲線方程的一般方法和步驟,能根據(jù)所給條件,選擇適當坐標系求曲線方程.

  過程性目標

  通過學生積極參與,親身經(jīng)歷曲線方程的獲得過程,體驗坐標法在處理幾何問題中的優(yōu)越性,滲透數(shù)形結(jié)合的數(shù)學思想.

  通過自主探索、合作交流,學生歷經(jīng)從“特殊——一般——特殊”的認知模式,完善認知結(jié)構(gòu).

  通過層層深入,培養(yǎng)學生發(fā)散思維的能力,深化對求曲線方程本質(zhì)的理解.

  情感、態(tài)度與價值觀目標

  通過合作學習,學生間、師生間的相互交流,感受探索的樂趣與成功的喜悅,體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑的科學精神.

  展現(xiàn)人文數(shù)學精神,體現(xiàn)數(shù)學文化價值及其在在社會進步、人類文明發(fā)展中的重要作用.

  2.教學重點和難點

  重點:求曲線方程的方法、步驟

  難點:幾何條件的代數(shù)化

  依據(jù):求曲線方程是解幾研究的兩大類問題之一,既是重點也是難點,是高考解答題取材的源泉.主要包括兩種類型求曲線的方程:一是已知曲線形狀時常用待定系數(shù)法;二是動點軌跡方程探求,本課的重點主要是探索動點的曲線方程.

  曲線與方程是貫穿平面解幾的知識,是解析幾何的核心.求曲線方程是幾何問題得以代數(shù)研究的先決,求曲線方程的過程類似數(shù)學建模的過程,是課堂上必須突破的難點.

  三、教學方法及教材處理

  1.教學方法:探究發(fā)現(xiàn)教學法.

  遵循以學生為主體,教師為主導,發(fā)展為主旨的現(xiàn)代教育原則,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設置問題,通過學生主動探索、積極參與、共同交流與協(xié)作,在教師的引導和合作下,學生“跳一跳”就能摘得果實,于問題的分析和解決中實現(xiàn)知識的建構(gòu)和發(fā)展,通過不斷探究、發(fā)現(xiàn),讓學習過程成為心靈愉悅的主動認知過程,使師生的生命活力在課堂上得到充分的發(fā)揮.

  2.學法指導

  學生學法:互相討論、探索發(fā)現(xiàn)

  由于學生在嘗試問題解決的過程中常會在新舊知識聯(lián)系、策略選擇、思想方法運用等方面遇到一定的困難,需要教師指導.作為學生活動的組織者、引導者、參與者,教師要幫助學生重溫與問題解決有關(guān)的舊知,給予學生思考的時間和表達的機會,共同對(解題)過程進行反思等,在師生(生生)互動中,給予學生啟發(fā)和鼓勵,在心理上、認知上予以幫助.

  這樣,在學法上確立的教法,能幫助學生更好地獲得完整的認知結(jié)構(gòu),使學生思維、能力等得到和諧發(fā)展.

  3.設計理念:

  求曲線方程就是將曲線上點的幾何表示形式轉(zhuǎn)化為代數(shù)表示形式。在這轉(zhuǎn)化過程中,學生通過積極參與、勇于探索的學習方式,讓學生的學習過程成為教師指導下的再創(chuàng)造,這也正是建構(gòu)主義理論的本質(zhì)要求;遵循學生認知規(guī)律,尊重學生個體差異,立足教材,通過對例題的再創(chuàng)造,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,讓不同層次的學生得到不同層度的發(fā)展;通過激發(fā)興趣,強調(diào)自主探索與合作交流,讓學生逐步地從學會走向會學,由被動走向主動,由課堂走向社會,為學生的終身學習和終身發(fā)展奠定良好的基礎,也是當前新課程所追求的基本理念.

  四、教學過程(教學設計)

  根據(jù)本課教學內(nèi)容幾何特性外化的特點,抓住形成軌跡的動點具備的幾何條件,運用坐標化的手段及等價轉(zhuǎn)化與數(shù)形結(jié)合的思想方法,突破難點,突出重點.本課的教學設計思路是:

  創(chuàng)設情景——從感性的軌跡(圖形)認識,到解決生活上的實例,激發(fā)學生的求知欲望,抓住學生迫切一試的認知心理,自然引入坐標法的意義及曲線方程的求法.

  例題探求——例題一體現(xiàn)知識的承前啟后.通過例題一的呈現(xiàn),學生借助已有的知識經(jīng)驗,自主探求獲得問題的求解,在教師的引導下,讓學生感受求曲線方程的含義及求解步驟;例題二及變式解決建系難點,建系的開放性,對學生是一種挑戰(zhàn),也是一種創(chuàng)造;兩個例題由淺入深,循序漸進,體現(xiàn)因材施教.至此,學生已能初步了解求曲線方程的一般方法和步驟了.

  歸納步驟——學生親身經(jīng)歷求曲線方程的過程,讓學生歸納(用自己的語言)、表述求解的步驟,體現(xiàn)從“特殊——一般”認知規(guī)律,逐步實現(xiàn)教學目標.

  變式練習——通過對例題的變式,由學生求解、回答變式后的含義,深化對認知結(jié)構(gòu)的理解,初步體會數(shù)學的理性與嚴謹,逐步養(yǎng)成質(zhì)疑與反思的習慣.

  反饋練習——利用學生探索而發(fā)展來的認知水平,運用獲得的知識解決情景創(chuàng)設中的實際問題,一方面可以考察學生運用所學數(shù)學知識解決實際問題的意識和能力;另一方面是學生思維的自然順應,自然釋放,是“一般——特殊”的過程.全面完成教學目標.

曲線和方程(通用11篇) 相關(guān)內(nèi)容:
  • 《方程》教案(精選17篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數(shù)”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內(nèi)容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據(jù)直觀情境里的等量關(guān)系列方程。...

  • 第一單元 方程 教案(通用2篇)

    第一課時 方程的意義教學內(nèi)容:教科書第1~2頁的內(nèi)容及練習一的1~3題。教學目標:1、通過學習,使學生理解方程的含義,知道像x+50=150、2x=200這樣含有未知數(shù)的等式是方程。2、培養(yǎng)學生概括、歸納的能力。...

  • 第一單元《方程》第三課時(精選17篇)

    教學內(nèi)容:教科書第6頁練習一的第7~12題。 教學目標: 1、通過練習,使學生進一步體會方程的意義及等式的性質(zhì)。 2、通過練習,使學生能根據(jù)等式的性質(zhì),正確地解方程及檢驗。...

  • 《方程》教案范文合集(精選13篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數(shù)”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內(nèi)容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據(jù)直觀情境里的等量關(guān)系列方程。...

  • 第一單元《方程》第一課時(精選12篇)

    第一課時 教學內(nèi)容:教科書第1~2頁,例1、例2、試一試、練一練,練習一第1~3題。 教學目標: 1、認識等式,以具體的實例引導學生通過自主的探索活動,初步理解等式的特征。...

  • 第一單元 方程 5、整理與練習(精選3篇)

    第一單元 方程7、整理與練習(3)主備人:孫麗萍教學內(nèi)容:教科書第9頁第11-14題。教學目標:1、在實踐活動中進一步體會列方程解決問題的靈活性及其獨特價值,提高分析問題和解決問題的能力。...

  • 式與方程教學設計(精選7篇)

    教學目標:1、使學生進一步體會方程的意義和思想,會用等式的性質(zhì)解一些簡單的方程。2、使學生進一步認識用字母表示數(shù)及其作用,能正確地用含有字母的式子表示數(shù)量及數(shù)量關(guān)系、計算公式,3、培養(yǎng)學生抽象,概括的能力。...

  • 《方程》教案范文錦集(精選13篇)

    教學內(nèi)容:教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。教學目標:1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。...

  • 理想氣體的狀態(tài)方程(通用2篇)

    教學目標 知識目標1、知道摩爾氣體常量.了解克拉珀龍方程的推導過程.2、在理解克拉珀龍方程內(nèi)容的基礎上學會方程的應用.3、進一步強化對氣體狀態(tài)方程的應用.能力目標通過克拉珀龍方程的推導,培養(yǎng)學生對問題的分析、推理、綜合能力.情感目...

  • 稍復雜的方程(精選12篇)

    教學內(nèi)容: 列方程解含有兩個未知數(shù)的應用題(例3,練習十三的第4、5、6、7題。)教學目標:1.初步學會分析“已知有兩個數(shù)的和或差,和兩個數(shù)的倍數(shù)關(guān)系,求兩數(shù)各是多少”的應用題,正確地列出方程解答。...

  • 第一單元《方程》第二課時(精選13篇)

    第二課時 教學內(nèi)容:教科書第3~4頁,例3、例4、試一試、練一練,練習一第4~6題。 教學目標: 1、使學生在具體的情景中的初步理解“等式的兩邊同時加上或減去同一個數(shù),所得的結(jié)果仍然是等式”,會用等式的性質(zhì)解簡單的方程。...

  • 圓與方程教案圓與方程課件(精選2篇)

    《一元二次方程》教案及反思教學目標:1、經(jīng)歷抽象一元二次方程概念的過程,進一步體會是刻畫現(xiàn)實世界的有效數(shù)學模型2、理解什么是一元二次方程及一元二次方程的一般形式。...

  • 整理與練習(精選2篇)

    教學內(nèi)容: 教科書第12~13頁,“回顧與整理”、“練習與應用”第1~4題。教學目標:1、通過整理,讓學生把本單元的知識進行系統(tǒng)的梳理,形成知識的體系,進一步理解本單元的重點和難點。2、通過練習,提高學生解方程的正確率和速度。...

  • 稍復雜方程 第三課時(精選2篇)

    第二課時教學內(nèi)容:教材練習十二的第5——11題。教學目標:1、通過練習,使學生進一步鞏固解答形如ax±b=c的方程。2、通過練習,使學生進一步鞏固用方程解答一個量比另一個量的幾倍多(少)幾的問題,提高學生解答問題的能力。...

  • 式與方程(精選12篇)

    第一課時 用字母表示數(shù)與簡易方程教學目標:使學生進一步理解用字母表示數(shù)的優(yōu)越性;熟練掌握用字母表示公式、計算法則和常見的數(shù)量關(guān)系等。進一步認識理解并區(qū)別方程的意義、方程的解和解方程等概念;熟練正確地用方程解答有關(guān)的文字題,...

  • 高二數(shù)學教案
主站蜘蛛池模板: 无码免费H成年动漫在线观看网站 | 九九热国产精品视频 | 97精品国产97久久久久久 | 免费看黄色毛片网站播放 | 免费福利视频一区二区三区 | 依依成人精品视频在线观看 | 国产欧美一区二区精品婷婷 | 国产精品久久久久久久久久妞妞 | 国产盗摄XXXX视频XXXⅩ | 国产一区二区三区国产精品 | 91久久久爱一区二区三区 | 人妻精品久久无码专区涩涩 | 欧美国产精品一区二区三区 | 一个人看的www高清免费资源 | 亚洲AV日韩精品久久久久久久 | 亚洲第一天堂在线观看 | 九九精品成人免费国产片 | 大地影视mv高清视频 | 男人插女人的免费视频 | 国产成人精品一区二三区四区五区 | zzzwww在线看片免费 | 18禁无遮挡无码网站免费 | 中字幕一区二区三区乱码 | 日本在线精品 | a级片段| 日本亚洲精品一区二区三 | 国产无遮挡又黄又爽免费视频 | 黄色国产精品 | 色爱天堂200 | 卡一卡2卡3卡4精品乱码免费 | 黄色影院在线免费观看 | 久久女同互慰一区二区三区 | 日韩不卡在线视频 | 日本一区二区三区爆乳 | 特大巨黑吊xxxx高潮 | 毛片特黄| 少妇高潮太爽了在线视频 | 韩国午夜理论a三级在线观看 | 人妻中文无码就熟专区 | 亚洲伊人中文字幕 | 国产福利视频在线观看 |