中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高二數學教案 > 橢圓及其標準方程(精選15篇)

橢圓及其標準方程

發布時間:2023-07-25

橢圓及其標準方程(精選15篇)

橢圓及其標準方程 篇1

  教學目標

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

  教學建議

  教材分析

  1.  知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注意下面幾點:

  ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

  ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

  為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

  (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

  (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

  在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

  (5)注意橢圓的定義與橢圓的標準方程的聯系

  在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

  (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

  推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

  (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

  (8)在學習新知識的基礎上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

  (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

橢圓及其標準方程 篇2

  【考試要求】掌握橢圓的定義、標準方程,理解橢圓的參數方程.【學習重點】1、橢圓的兩個定義及離心率,準線與 a,b,c三個量之間的關系;2、橢圓方程的求解,定義靈活運用.【學習難點】橢圓方程的求解,定義靈活運用.【高考風向標】橢圓是一種重要的圓錐曲線,因而是高考命題的熱點之一.常與平面幾何、三角函數、向量等以及實際問題相聯系來考查橢圓的概念和性質,定值、最值、取值范圍等問題將會有所加強,計算要求將有所降低,參數方程可能在考查其他內容時附帶考查,一般不會單獨命題.【知識整合】1、 橢圓的定義:(1)第一定義:平面內與兩個定點f1、f2的距離的   等于常數    (         ) 的點的軌跡叫做橢圓.這兩個定點f1、f2叫做     ,定點間的距離叫做     .①當     時,點p的軌跡是線段   ; ②當     時,點p的軌跡不存在.(2) 第二定義:平面內動點p到定點f的距離和它到定直線 的距離的  是常數  (       )的點的軌跡是橢圓.定點f是    ,定直線 是    ,常數e是       2、 橢圓的標準方程

  橢圓焦點的位置

  方程的形式

  焦點在x軸上

  焦點在y軸上

  其中:①焦距為2c,則a,b,c關系為a最大且a2=        ;②由橢圓的標準方程判斷焦點位置或由焦點位置選橢圓標準方程的形式的方法是         ;當橢圓是標準方程,但焦點位置不確定時,可應用分類討論法解答,也可設其方程為               或                 ③求橢圓方程的基本步驟是:                  (六個字概括)3、 橢圓+=1(a>b>0)的參數方程為            (     )4、 點p(x0,y0)在橢圓+=1(a>b>0)的上                ;點p(x0,y0)在橢圓+=1(a>b>0)的內部              ; 點p(x0,y0)在橢圓+=1(a>b>0)的外部              .【基礎練習】(1)     已知f1(-1,0),f2(1,0),滿足|pf1|+|pf2|=2 的點p的軌跡為              ;若|pf1|+|pf2|=2時,點p的軌跡為               (2)f1,f2是橢圓的兩個焦點,橢圓上任一點到f1,f2的距離和為常數2a,過f1的直線交橢圓于c、d兩點,則△cdf2的周長為          (3)(課本題)已知b、c是兩個定點,|bc|=6,且△abc的周長等于16,則頂點a的軌跡方程                  (4)設m是橢圓+=1上的點,f1,f2是焦點,∠f1mf2=300,則 =   (5)平面內與定點f(2,0)的距離和它到定直線x=8的距離的比是1:2,則點p的軌跡方程是            ,軌跡是                          變式1:若將“1:2”改為“1:3”呢?                           變式2:若將“f(2,0)”改為“f(1,0)”呢?                     【典型例題】例1(課本題)求適合下列條件的橢圓的方程:(1)長軸是短軸的2倍,且一條準線方程為x=-4;(2)離心率等于0.8,焦距是8; (3)過點m(-2, )和n(1, )的橢圓方程.

  平行題: 以短軸的一個端點和兩焦點為頂點的三角形為正三角形,且焦點到橢圓的最短距離為

  例2、(1) △abc的一邊bc在x軸上,b、c的中點在原點,|bc|=16,ab和ac兩邊中線長的和為30,求△abc的重心g的軌跡方程。 (2)求過點a(2,0)且與圓x2+4x+y2-32=0內切的圓的圓心的軌跡方程. 平行題:(1)(課本題)已知△abc的兩個頂點a、b的坐標分別是(-6,0)、(6,0),邊ac、bc所在直線的斜率之積等于 - ,求頂點c的軌跡方程(2)動圓c和定圓c1:x2+(y-4)2=64內切而和定圓c2:x2+(y+4)2=4外切,求動圓圓心的軌跡方程例3、已知點a(1,1),f1是橢圓5x2+9y2=45的左焦點,點p是橢圓上的動點,求:|pf1|+|pa|的最小值和|pf1|+|pa|的最大值平行題:已知點a(-2, ),點f為橢圓+=1的右焦點,點m在橢圓上移動,求|am|+2|mf|的最小值,并求此時點m的坐標.  【鞏固練習】1、(01全國)若橢圓經過原點,且焦點為f1(1,0),f2(3,0),則其離心率為(    )a.          b.          c.          d. 2、已知 為定直線,f為定點,點f不在 上,則以f為焦點, 為對應準線的橢圓有(     )a. 1個         b. 2個       c.1個或2個    d. 無窮多個3、曲線c1: +=1與c2: +=1(k<9)有相同的(    )a。長軸        b。準線    c。焦點        d。離心率4、點p在橢圓7x2+4y2=28上,則點p到直線3x-2y-16=0的距離的最大值為(     )a.      b.    c.      d. 5、設p是橢圓+=1上一點,p到兩焦點f1、f2的距離之差為2,則△p f1f2是(     )三角形a.銳角          b.直角       c.鈍角         d.等腰直角6、若橢圓+=1的離心率為e=,則m的值為          7、已知點p在橢圓4x2+y2=4上,則x+y的取值范圍為           8、和橢圓9x2+4y2=36有相同的焦點,且經過q(2,-3)的橢圓的標準方程是                     9、(課本題)點m與橢圓+=1的左焦點和右焦點的距離的比為2:3,點m的軌跡方程               ;10、(課本題)點p是橢圓+=1上一點,以點p以及焦點f1、f2為頂點的三角形的面積等于1,則點p的坐標為        

橢圓及其標準方程 篇3

  教學目標 

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

  教學建議

  教材分析

  1.  知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注意下面幾點:

  ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

  ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

  為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

  (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

  (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

  在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程 中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

  (5)注意橢圓的定義與橢圓的標準方程的聯系

  在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

  (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

  推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

  (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

  (8)在學習新知識的基礎上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

  (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

橢圓及其標準方程 篇4

  教學目標 

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

  教學建議

  教材分析

  1.  知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注意下面幾點:

  ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

  ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

  為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

  (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

  (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

  在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程 中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

  (5)注意橢圓的定義與橢圓的標準方程的聯系

  在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

  (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

  推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

  (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

  (8)在學習新知識的基礎上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

  (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

橢圓及其標準方程 篇5

  教學目標

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

  教學建議

  教材分析

  1.  知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注意下面幾點:

  ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

  ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

  為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

  (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

  (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

  在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

  (5)注意橢圓的定義與橢圓的標準方程的聯系

  在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

  (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

  推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

  (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

  (8)在學習新知識的基礎上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

  (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

  第 1 2 頁  

橢圓及其標準方程 篇6

  教學目標

  1.把握橢圓的定義,把握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,把握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步把握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習愛好和創新意識.

  教學建議

  教材分析

  1. 知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是把握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先碰到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注重到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種非凡情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注重不要忽略這兩種非凡情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注重下面幾點:

  ①曲線的方程依靠于坐標系,建立適當的坐標系,是求曲線方程首先應該注重的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整潔和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整潔、簡潔,要讓學生認真領會.

  ③在方程的推導過程中碰到了無理方程的化簡,這既是我們今后在求軌跡方程時經常碰到的問題,又是學生的難點.要注重說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證實,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:外形相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,假如求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習愛好.

  為激發學生學習圓錐曲線的愛好,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.假如這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的熟悉.

  (3)對橢圓的定義的引入,要注重借助于直觀、形象的模型或教具,讓學生從感性熟悉入手,逐步上升到理性熟悉,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先預備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

橢圓及其標準方程 篇7

  教學目標 

  1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;

  2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程;

  3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;

  4.通過橢圓的標準方程的推導,使學生進一步掌握求曲線方程的一般方法,并滲透數形結合和等價轉化的思想方法,提高運用坐標法解決幾何問題的能力;

  5.通過讓中國學習聯盟膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識.

  教學建議

  教材分析

  1.  知識結構

  2.重點難點分析

  重點是橢圓的定義及橢圓標準方程的兩種形式.難點是橢圓標準方程的建立和推導.關鍵是掌握建立坐標系與根式化簡的方法.

  橢圓及其標準方程這一節教材整體來看是兩大塊內容:一是橢圓的定義;二是橢圓的標準方程.橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學中鞏固和應用.先講橢圓也與第七章的圓的方程銜接自然.學好橢圓對于學生學好圓錐曲線是非常重要的.

  (1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質,可以對比圓的定義來理解.

  另外要注意到定義中對“常數”的限定即常數要大于 .這樣規定是為了避免出現兩種特殊情況,即:“當常數等于 時軌跡是一條線段;當常數小于 時無軌跡”.這樣有利于集中精力進一步研究橢圓的標準方程和幾何性質.但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準確性.

  (2)根據橢圓的定義求標準方程,應注意下面幾點:

  ①曲線的方程依賴于坐標系,建立適當的坐標系,是求曲線方程首先應該注意的地方.應讓學生觀察橢圓的圖形或根據橢圓的定義進行推理,發現橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標系的兩軸,不但可以使方程的推導過程變得簡單,而且也可以使最終得出的方程形式整齊和簡潔.

  ②設橢圓的焦距為 ,橢圓上任一點到兩個焦點的距離為 ,令 ,這些措施,都是為了簡化推導過程和最后得到的方程形式整齊、簡潔,要讓學生認真領會.

  ③在方程的推導過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經常遇到的問題,又是學生的難點.要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側,把其他項移至另一側;②方程中有兩個根式時,需將它們分別放在方程的兩側,并使其中一側只有一項.

  ④教科書上對橢圓標準方程的推導,實際上只給出了“橢圓上點的坐標都適合方程 “而沒有證明,”方程 的解為坐標的點都在橢圓上”.這實際上是方程的同解變形問題,難度較大,對同學們不作要求.

  (3)兩種標準方程的橢圓異同點

  中心在原點、焦點分別在 軸上, 軸上的橢圓標準方程分別為: , .它們的相同點是:形狀相同、大小相同,都有 , .不同點是:兩種橢圓相對于坐標系的位置不同,它們的焦點坐標也不同.

  橢圓的焦點在 軸上 標準方程中 項的分母較大;

  橢圓的焦點在 軸上 標準方程中 項的分母較大.

  另外,形如 中,只要 , , 同號,就是橢圓方程,它可以化為 .

  (4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法.例3有三個作用:第一是教給學生利用中間變量求點的軌跡的方法;第二是向學生說明,如果求得的點的軌跡的方程形式與橢圓的標準方程相同,那么這個軌跡是橢圓;第三是使學生知道,一個圓按某一個方向作伸縮變換可以得到橢圓.

  教法建議

  (1)使學生了解圓錐曲線在生產和科學技術中的應用,激發學生的學習興趣.

  為激發學生學習圓錐曲線的興趣,體會圓錐曲線知識在實際生活中的作用,可由實際問題引入,從中提出圓錐曲線要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還可以啟發學生尋找身邊與圓錐曲線有關的例子。

  例如,我們生活的地球每時每刻都在環繞太陽的軌道——橢圓上運行,太陽系的其他行星也如此,太陽則位于橢圓的一個焦點上.如果這些行星運動的速度增大到某種程度,它們就會沿拋物線或雙曲線運行.人類發射人造地球衛星或人造行星就要遵循這個原理.相對于一個物體,按萬有引力定律受它吸引的另一個物體的運動,不可能有任何其他的軌道.因而,圓錐曲線在這種意義上講,它構成了我們宇宙的基本形式,另外,工廠通氣塔的外形線、探照燈反光鏡的軸截面曲線,都和圓錐曲線有關,圓錐曲線在實際生活中的價值是很高的.

  (2)安排學生課下切割圓錐形的事物,使學生了解圓錐曲線名稱的來歷

  為了讓學生了解圓錐曲線名稱的來歷,但為了節約課堂時間,教學時應安排讓學生課后親自動手切割圓錐形的蘿卜、膠泥等,以加深對圓錐曲線的認識.

  (3)對橢圓的定義的引入,要注意借助于直觀、形象的模型或教具,讓學生從感性認識入手,逐步上升到理性認識,形成正確的概念。

  教師可從太陽、地球、人造地球衛星的運行軌道,談到圓蘿卜的切片、陽光下圓盤在地面上的影子等等,讓學生先對橢圓有一個直觀的了解。

  教師可事先準備好一根細線及兩根釘子,在給出橢圓在數學上的嚴格定義之前,教師先在黑板上取兩個定點(兩定點之間的距離小于細線的長度),再讓兩名學生按教師的要求在黑板上畫一個橢圓。畫好后,教師再在黑板上取兩個定點(兩定點之間的距離大于細線的長度),然后再請剛才兩名學生按同樣的要求作圖。學生通過觀察兩次作圖的過程,總結出經驗和教訓,教師因勢利導,讓學生自己得出橢圓的嚴格的定義。這樣,學生對這一定義就會有深刻的了解。

  (4)將提出的問題分解為若干個子問題,借助多媒體課件來體現橢圓的定義的實質

  在教學時,可以設置幾個問題,讓學生動手動腦,獨立思考,自主探索,使學生根據提出的問題,利用多媒體,通過觀察、實驗、分析去尋找解決問題的途徑。在橢圓的定義的教學過程 中,可以提出“到兩定點的距離的和為定值的點的軌跡一定是橢圓嗎”,讓學生通過課件演示“改變焦距或定值”,觀察軌跡的形狀,從而挖掘出定義的內涵,這樣就使得學生對橢圓的定義留下了深刻的印象。

  (5)注意橢圓的定義與橢圓的標準方程的聯系

  在講解橢圓的定義時,就要啟發學生注意橢圓的圖形特征,一般學生比較容易發現橢圓的對稱性,這樣在建立坐標系時,學生就比較容易選擇適當的坐標系了,即使焦點在坐標軸上,對稱中心是原點(此時不要過多的研究幾何性質).雖然這時學生并不一定能說明白為什么這樣選擇坐標系,但在有了一定感性認識的基礎上再講解選擇適當坐標系的一般原則,學生就較為容易接受,也向學生逐步滲透了坐標法.

  (6)推導橢圓的標準方程時教師要注意化解難點,適時地補充根式化簡的方法.

  推導橢圓的標準方程時,由于列出的方程為兩個跟式的和等于一個非零常數,化簡時要進行兩次平方,方程中字母超過三個,且次數高、項數多,教學時要注意化解難點,盡量不要把跟式化簡的困難影響學生對橢圓的標準方程的推導過程的整體認識.通過具體的例子使學生循序漸進的解決帶跟式的方程的化簡,即:(1)方程中只有一個跟式時,需將它單獨留在方程的一邊,把其他各項移至另一邊;(2)方程中有兩個跟式時,需將它們放在方程的兩邊,并使其中一邊只有一項.(為了避免二次平方運算)

  (7)講解了焦點在x軸上的橢圓的標準方程后,教師要啟發學生自己研究焦點在y軸上的標準方程,然后鼓勵學生探索橢圓的兩種標準方程的異同點,加深對橢圓的認識.

  (8)在學習新知識的基礎上要鞏固舊知識

  橢圓也是一種曲線,所以第七章所講的曲線和方程的知識仍然使用,在推導橢圓的標準方程中要注意進一步鞏固曲線和方程的概念.對于教材上在推出橢圓的標準方程后,并沒有證明所求得的方程確是橢圓的方程,要注意向學生說明并不與前面所講的曲線和方程的概念矛盾,而是由于橢圓方程的化簡過程是等價變形,而證明過程較繁,所以教材沒有要求也沒有給出證明過程,但學生要注意并不是以后都不需要證明,注意只有方程的化簡是等價變形的才可以不用證明,而實際上學生在遇到一些具體的題目時,還需要具體問題具體分析.

  (9)要突出教師的主導作用,又要強調學生的主體作用,課上盡量讓全體學生參與討論,由基礎較差的學生提出猜想,由基礎較好的學生幫助證明,培養學生的團結協作的團隊精神。

橢圓及其標準方程 篇8

  橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。

  橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。

  橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力。

  設計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調動、活躍學生的思維,發展學生數學思維能力,讓學生在解決問題中發展學生的數學應用意識和創新能力,同時培養學生大膽實踐、勇于探索的精神,開闊學生知識應用視野。

橢圓及其標準方程 篇9

  一、概說

  1.教材分析:

  橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。

  2.教學分析:

  橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。

  3.學生分析:

  高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。

  基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。

  引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。

  我設定的教學重點是:橢圓定義的理解及標準方程的推導。

  教學難點是:標準方程的推導。

  二、目標說明:

  根據數學教學大綱要求確立“三位一體”的教學目標。

  1.知識與技能目標:

  理解橢圓定義、掌握標準方程及其推導。

  2.過程與方法目標:注重數形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養。

  3.情感、態度和價值觀目標:

  (1)探究方法激發學生的求知欲,培養濃厚的學習興趣。

  (2)進行數學美育的滲透,用哲學的觀點指導學習。

  三、過程說明:

  依據“一個為本,四個調整”的新的教學理念和上述教學目標設計教學過程。“以學生發展為本,新型的師生關系、新型的教學目標、新型的教學方式、新型的呈現方式”體現如下:

  (一)對教材的重組與拓展:根據教學目標,選擇教學內容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運行軌道圖,最后,讓學生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。

  (二)在教學過程中的體現:

  1.新課導入:以影音文件“海爾波譜彗星的運行軌道示意圖”導入,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。

  2.新課呈現:

  學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。

  3.鞏固應用

  根據定義及其標準方程,設計三組九道練習題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。

  4.繼續探究:

  (1)觀察橢圓形狀,不同原因在哪里;

  (2)改變繩長或變換焦點位置再畫橢圓,發現關系;

  (3)用幾何畫板交流畫圖,觀察形狀變化;

  (4)如何描述形狀變化?

  引導學生探究欲望,開展研究性學習。

  四、評價說明

  本節課的學生評價堅持形成性評價和階段性評價相結合的原則。

  (一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。

  (二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。

  (三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。

  五、說課總結

  這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養。

橢圓及其標準方程 篇10

  我說課的題目是全日制普通高級中學教科書(試驗修訂本.必修)《數學》第二冊、第八章《圓錐曲線》、第一節《橢圓及其標準方程》。

  一、概說:

  1、教材分析:

  橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用,直接影響其他圓錐曲線的學習。是后繼學習的基礎和范示。同時,也是求曲線方程的深化和鞏固。

  2、教學分析:

  橢圓及其標準方程是培養學生觀察、分析、發現、概括、推理和探索能力的極好素材。本節課通過創設情景、動手操作、總結歸納,應用提升等探究性活動,培養學生的數學創新精神和實踐能力,使學生掌握坐標法的規律,掌握數學學科研究的基本過程與方法。

  3、學生分析:

  高中二年級學生正值身心發展的鼎盛時期,思維活躍,又有了相應知識基礎,所以他們樂于探索、敢于探究。但高中生的邏輯思維能力尚屬經驗型,運算能力不是很強,有待于訓練。

  基于上述分析,我采取的是教學方法是“問題誘導--啟發討論--探索結果”以及“直觀觀察--歸納抽象--總結規律”的一種研究性教學方法,注重“引、思、探、練”的結合。

  引導學生學習方式發生轉變,采用激發興趣、主動參與、積極體驗、自主探究的學習,形成師生互動的教學氛圍。

  我設定的教學重點是:橢圓定義的理解及標準方程的推導。

  教學難點 是:標準方程的推導。

  二、目標說明:

  根據數學教學大綱要求確立“三位一體”的教學目標 。

  1、知識與技能目標:

  理解橢圓定義、掌握標準方程及其推導。

  2、過程與方法目標:注重數形結合,掌握解析法研究幾何問題的一般方法,注重探索能力的培養。

  3、情感、態度和價值觀目標:

  (1)探究方法激發學生的求知欲,培養濃厚的學習興趣。

  (2)進行數學美育的滲透,用哲學的觀點指導學習。

  三、過程說明:

  依據“一個為本,四個調整”的新的教學理念和上述教學目標 設計教學過程 。“以學生發展為本,新型的師生關系、新型的教學目標 、新型的教學方式、新型的呈現方式”體現如下:

  (一)對教材的重組與拓展:根據教學目標 ,選擇教學內容,遵循拓展、開放、綜合的原則。教材中對橢圓定義盡管很嚴密,但不夠直觀,所以增加了影音文件:海爾波譜彗星的運行軌道圖,最后,讓學生交流用幾何畫板畫橢圓以及5個探究性問題,作為對教材的拓展。

  (二)在教學過程 中的體現:

  1、新課導入  :以影音文件“海爾波譜彗星的運行軌道示意圖”導入  ,呈現方式具有新異性,激發學習興趣;畫板畫圖,增強動手操作意識,直觀形象從而引入橢圓定義,進而研究橢圓標準方程。

  2、新課呈現:

  學生通過觀看文件、動手操作,然后自己總結橢圓定義,符合從感性上升為理性的認知規律,而且提升了抽象概括的能力。然后,進行推導橢圓的標準方程,培養運算能力,進而探討標準方程的特點。教師作為熱烈討論的平等氛圍中的引導者,鼓勵學生大膽探究、勇于創新,積極談論和參與體驗,培養嚴謹的邏輯思維,抽象概括的能力,滲透數學美學教育,掌握數形結合的重要數學思想,最后的幾個探究性問題鼓勵學生積極探索,敢于探究,轉變學習方式。

  3、鞏固應用

  根據定義及其標準方程,設計三組九道練習題,引導學生聯系、思考、討論、反饋、矯正,增強運用能力。

  4、繼續探究:

  (1)觀察橢圓形狀,不同原因在哪里;

  (2)改變繩長或變換焦點位置再畫橢圓,發現關系;

  (3)用幾何畫板交流畫圖,觀察形狀變化;

  (4)如何描述形狀變化?

  引導學生探究欲望,開展研究性學習。

  四、評價說明:

  本節課的學生評價堅持形成性評價和階段性評價相結合的原則。

  (一)形成性評價:從操作能力、概括能力、學習興趣、交流合作、情緒情感方面對學習效果進行過程評價。對出現問題的學生,教師指出其可取之處并耐心引導,這樣有助于培養他們勇于面對挫折,持之以恒地科學探索精神;當學生做的精彩有創新,教師給予學生充分的鼓勵,從而進一步激發學生創造的潛能,提高他們的創新能力。

  (二)階段性評價:從單元測試、期中測試等方面對學生的階段性學習成果進行測試。評價結果以每次測試成績和學生平時的綜合表現為依據。同時要進行學生的自我評價以及教師對行動的綜合性評價。

  (三)教師自我反思評價:本課充分體現了“一個為本,四個調整”的新課程理念。

  五、說課總結:

  這節課使用計算機網絡技術,展現知識的發生過程,是學生始終處于問題探索研究狀態之中,激情引趣。注重數學科學研究方法的掌握,是研究性教學的一次有益嘗試。有利于改變學生的學習方式,有利于學生自主探究,有利于學生的實踐能力和創新意識的培養。

橢圓及其標準方程 篇11

  一、教學內容分析(簡要說明課題來、學習內容、這節課的價值以及學習內容的重要性)

  本節課是高中新課程人教A版數學選修1—1第二章第一單元《橢圓及其標準方程》的第一課時.

  本節的內容是繼學習圓之后運用 “曲線和方程”理論解決具體二次曲線的又一實例.從知識上說,它是對前面所學的運用坐標法研究曲線的又一次實際演練,同時它也是進一步研究橢圓幾何性質的基礎;從方法上說,推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,因此,這節課有承前啟后的作用,是本節乃至本章的重點。

  二、教學目標(從知識與技能、過程與方法、情感態度與價值觀三個維度對該課題預計要達到的教學目標做出一個整體描述)

  基于新課標的要求,結合本節內容的地位,我提出教學目標如下:

  (1)知識與技能:

  ①了解橢圓的實際背景,經歷從具體情景中抽象出橢圓模型的過程;

  ②使學生理解橢圓的定義,掌握橢圓的標準方程及其推導過程.

  (2)過程與方法:

  ①讓學生親身經歷橢圓定義和標準方程的獲取過程,掌握求曲線方程的方法和數形結合的思想;

  ②學會用運動變化的觀點研究問題,提高運用坐標法解決幾何問題的能力.

  (3)情感態度與價值觀:

  ①通過主動探究、合作學習,感受探索的樂趣與成功的喜悅;培養學生認真參與、積極交流的主體意識和樂于探索創新的科學精神。

  ②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹

  ③通過橢圓知識的學習,進一步體會到數學知識的和諧美,幾何圖形的對稱美;提高學生的審美情趣.

  三、學習者特征分析(說明學習者在知識與技能、過程與方法、情感態度等三個方面的學習準備(學習起點),以及學生的學習風格。最好說明教師是以何種方式進行學習者特征分析,比如說是通過平時的觀察、了解;或是通過預測題目的編制使用等)

  1.能力分析

  ①學生已初步掌握用坐標法研究直線和圓的方程,②對含有兩個根式方程的化簡能力薄弱。

  2.認知分析

  ①學生已初步熟悉求曲線方程的基本步驟,②對曲線的方程的概念有一定的了解。

  3.情感分析

  學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。

  改變學生的學習方式是高中課改追求的基本理念。遵循以學生為主體,教師為主導,發展為主旨的現代教育原則。我采用了通過創設情境,充分調動學生已有的學習經驗,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題;以學生主動探索、積極參與、共同交流與協作為主體,在教師的引導下,學生“跳一跳”就能摘得果實;于問題的分析和解決中實現知識的建構和發展。通過不斷探究、發現,讓學生的學習過程成為心靈愉悅的主動過程,使師生的生命力在課堂上得到充分的發揮。激發學生的學習興趣和創新能力,幫助學生養成獨立思考積極探索的習慣。

  四、教學策略選擇與設計(說明本課題設計的基本理念、主要采用的教學與活動策略)

  橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數學方法有觀察、比較、歸納、猜想、推理驗證等,我校學生基礎差、底子薄,數學運算能力,分析問題、解決問題的能力,邏輯推理能力,思維能力都比較弱,所以在設計課的時候往往要多作鋪墊,掃清他們學習上的障礙,保護他們學習的積極性,增強學習的主動 。在教法上,主要采用探究性教學法和啟發式教學法。以啟發、引導為主,采用設疑的形式,逐步讓學生進行探究性的學習

  五、教學重點及難點(說明本課題的重難點)

  基于以上分析,我將本課的教學重點、難點確定為: ①重點:橢圓定義和標準方程 ②難點:橢圓的標準方程的推導。

  六、教學過程(這一部分是該教學設計方案的關鍵所在,在這一部分,要說明教學的環節及所需的資源支持、具體的活動及其設計意圖以及那些需要特別說明的教師引導語)

  一. 創設問題情境:

  情境1:給出橢圓的一些實物圖片:天體運行圖(月亮繞地球,地球繞太陽旋轉)、汽車油罐的橫截面,立體幾何中圓的直觀圖?

  實物:圓柱形杯傾斜后杯中水的形狀。

  情境2:校園內一些橢圓形小花壇

  問題 學校準備在一塊長3米、寬1米的矩形空地上建造一個橢圓形花園,要盡可能多地利用這塊空地,請問:如何畫這個花園的邊界線?

  (學生現在還不能解決,只有通過今天這節課的學習才能解決這個問題)

  這是實際生活中圖形,數學中我們也遇到這一類圖形:歸結為到兩定點距離之和為定值的點的軌跡問題。如何用現有的工具畫出圖形?(啟發學生用畫圓的方法試著畫圖)

  教師與學生一起找出上述問題的解決方案,并一同用給的工具畫出圖形,與上述圖形相似——橢圓

  問題情境的創設應有利于激發學生的求知欲。為了學習橢圓的定義,我設計如下兩個學生熟悉的情境:

  通過情境1,讓學生感受到橢圓的存在非常普遍。小到日常生活用品,大到建筑物的外形,天體的運行軌道。

  通過情境2,讓學生主動思考如何畫橢圓及橢圓的定義。

  通過問題,要求學生以小組為單位進行實驗、觀察、猜想,激發學生探索的欲望和濃厚的學習興趣,使學生的主體地位得到體現。

  二. 探求橢圓方程

  如何選取坐標系?

  方案1:以一個定點為原點,兩定點的連線為X軸

  回顧圓的方程的建立過程,首先是做什么? (提問學生) 如何選擇適當的坐標系來建立橢圓的方程呢?

  學會建立適當的坐標系,構造數與形的橋梁,學會用解析的方法來解決問題,滲透數形結合的數學思想。

  方案2:以兩定點的連線為X軸,其垂直平分線為Y軸

  學生可能有很多種建系方法,根據課堂的實際情況進行處理。不能否定學生的方法,讓學生自己討論那種建系方法更為合適,我想學生通過這些活動能夠建立幾種常見的坐標系,并列出相應的代數方程。我認為這樣有利于培養學生的動手實驗,分析比較,相互協作等能力。讓學生體驗到知識的產生過程。

  三. 標準方程比較

  (讓學生討論,歸的標準方程有何異同)

  (1)相同點納出這兩種形式的標準方程有何異同)

  (1)相同點

  ①方程中x,y表示橢圓上任意一點 ②關于x,y的二元二次方程;

  ③焦點位置的判定:焦點在較大分坐標;

  (2)不同點

  ①方程形式 ②圖形 ③焦點坐標

  由于化簡兩個根式的方程的方法特殊,難度較大,估計學生容易想到直接平方,這時可讓學生預測這樣化簡的難度,從而確定移項平方可以簡化計算。為此,我首先啟發學生如何去掉根號較好,讓學生動手比較,最后得出移項平方化簡方程比較簡單,這樣有利于培養學生的分析比較能力。

  七、教學評價設計(創建量規,向學生展示他們將被如何評價(來自教師和小組其他成員的評價)。也可以創建一個自我評價表,這樣學生可以用它對自己的學習進行評價)

  橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力

  八、板書設計(本節課的主板書)

  一.定義

  二. 標準方程比較

  1)相同點 ①方程中x,y表示橢圓上任意一點的坐標; ②關于x,y的二元二次方程; ③焦點位置的判定:焦點在較大分母對應的變量的坐標軸上

  2)不同點 ①方程形式 ②圖形 ③焦點坐標

  九.教學反思

  橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。

  橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。

橢圓及其標準方程 篇12

  一、教材分析

  (一)教材的地位和作用

  本節是繼直線和圓的方程之后,用坐標法研究曲線和方程的又一次實際演練。橢圓的學習可以為后面研究雙曲線、拋物線提供基本模式和理論基礎。因此這節課有承前啟后的作用,是本章和本節的重點內容之一。

  (二)教學重點、難點

  1、教學重點:橢圓的定義及其標準方程

  2、教學難點:橢圓標準方程的推導

  (三)三維目標

  1、知識與技能:掌握橢圓的定義和標準方程,明確焦點、焦距的概念,理解橢圓標準方程的推導。

  2、過程與方法:通過引導學生親自動手嘗試畫圖、發現橢圓的形成過程進而歸納出橢圓的定義,培養學生觀察、辨析、類比、歸納問題的能力。

  3、情感、態度、價值觀:通過主動探究、合作學習,相互交流,對知識的歸納總結,讓學生感受探索的樂趣與成功的喜悅,增強學生學習的信心。

  二、教學方法和手段

  采用啟發式教學,在課堂教學中堅持以教師為主導,學生為主體,思維訓練為主線,能力培養為主攻的原則。

  “授人以魚,不如授人以漁。”要求學生動手實驗,自主探究,合作交流,抽象出橢圓定義,并用坐標法探究橢圓的標準方程,使學生的學習過程成為在教師引導下的“再創造”過程。

  三、教學程序

  1、創設情境,認識橢圓:通過實驗探究,認識橢圓,引出本節課的教學內容,激發了學生的求知欲。

  2、畫橢圓:通過畫圖給學生一個動手操作,合作學習的機會,從而調動學生的學習興趣。

  3、教師演示:通過多媒體演示,再加上數據的變化,使學生更能理性地理解橢圓的形成過程。

  4、橢圓定義:注意定義中的三個條件,使學生更好地把握定義。

  5、推導方程:教師引導學生化簡,突破難點,得到焦點在x軸上的橢圓的標準方程,利用學生手中的圖形得到焦點在軸上的橢圓的標準方程,并且對橢圓的標準方程進行了再認識。

  6、例題講解:通過例題規范學生的解題過程。

  7、鞏固練習:以多種題型鞏固本節課的教學內容。

  8、歸納小結:通過小結,使學生對所學的知識有一個完整的體系,突出重點,抓住關鍵,培養學生的概括能力。

  9、課后作業:面對不同層次的學生,設計了必做題與選做題。

  10、板書設計:目的是為了勾勒出全教材的主線,呈現完整的知識結構體系并突出重點,用彩色增加信息的強度,便于掌握。

  四、教學評價

  本節課貫徹了新課程理念,以學生為本,從學生的思維訓練出發,通過學習橢圓的定義及其標準方程,激活了學生原有的認知規律,并為知識結構優化奠定了基礎。

橢圓及其標準方程 篇13

  一、教學內容解析

  橢圓的定義是一種發生性定義,教學內容屬概念性知識,是通過描述橢圓形成過程進行定義的。作為橢圓本質屬性的揭示和橢圓方程建立的基石,理應作為本堂課的教學重點同時,橢圓的標準方程作為今后研究橢圓性質的根本依據,自然成為本節課的另一教學重點。學生對“曲線與方程”的內在聯系(數形結合思想的具體表現)僅在“圓的方程”一節中有過一次感性認識。但由于學生比較了解圓的性質,從“曲線與方程”的內在聯系角度來看,學生并未真正有所感受。所以,橢圓定義和橢圓標準方程的聯系成為了本堂課的教學難點。

  圓錐曲線是平面解析幾何研究的主要對象,圓錐曲線的有關知識不僅在生產、日常生活和科學技術中有著廣泛的應用,而且是今后進一步數學的基礎教科書以橢圓為學習圓錐曲線的開始和重點,并以之來介紹求圓錐曲線方程和利用方程討論幾何性質的一般方法,可見本節內容所處的重要地位。

  通過本節學習,學生一方面認識到一般橢圓與圓的區別與聯系,另一方面也為后面利用方程研究橢圓的幾何性質以及為學生類比橢圓的研究過程和方法,學習雙曲線、拋物線奠定了基礎。學習過程啟發學生能夠發現問題和提出問題,善于思考,學會分析問題和創造地解決問題;培養學生抽象概括能力和邏輯思維能力。

  二、教學目標設置:

  1.知識與技能目標

  (1)學生能掌握橢圓的定義明確焦點、焦距的概念.

  (2)學生能推導并掌握橢圓的標準方程.

  (3)學生在學習過程中進一步感受曲線方程的概念,體會建立曲線方程的基本方法,運用數形結合的數學思想方法解決問題.

  2.過程與方法目標:

  (1)學生通過經歷橢圓形成的情境感知橢圓的定義并親自參與歸納.培養學生發現規律、認識規律的能力.

  (2)學生類比圓的方程的推導過程嘗試推導橢圓標準方程,培養學生利用已知方法解決實際問題的能力.

  (3)在橢圓定義的獲得和其標準方程的推導過程中進一步滲透數形結合等價轉化等數學思想方法.

  3.情感態度與價值觀目標:

  (1)通過橢圓定義的獲得讓學生感知數學知識與實際生活的密切聯系培養學生探索數學知識的興趣并感受數學美的熏陶.

  (2)通過標準方程的推導培養學生觀察,運算能力和求簡意識并能懂得欣賞數學的“簡潔美”.

  (3)通過師生、生生的合作學習,增強學生團隊協作能力的培養,增強主動與他人合作交流的意識.

  三、學生學情分析

  1.能力分析

  ①學生已初步掌握用坐標法研究直線和圓的方程,

  ②對含有兩個根式方程的化簡能力薄弱.

  2.認知分析

  ①學生已初步熟悉求曲線方程的基本步驟,

  ②學生已經掌握直線和圓的方程,對曲線的方程的概念有一定的了解,

  ③學生已經初步掌握研究直線和圓的基本方法.

  3.情感分析

  學生具有積極的學習態度,強烈的探究欲望,能主動參與研究.

  四、教學策略分析

  教學中通過創設情境,充分調動學生已有的學習經驗,讓學生經歷“創設情境——總結概括——啟發引導——探究完善——實際應用”的過程,發現新的知識,又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質.

  課堂教學中創設問題的情境,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效地滲透數學思想方法,發展學生思維品質,這是本節課的教學原則.根據這樣的原則及所要完成的教學目標,我采用如下的教學方法和手段:

  1.引導發現法:用課件演示動點的軌跡,啟發學生歸納、概括橢圓定義.

  2.探索討論法:由學生通過聯想、歸納把原有的求軌跡方法遷移到新情況中,有利于學生對知識進行主動建構;有利于突出重點,突破難點,發揮其創造性.

  這兩種方法是適應新課程體系的一種全新教學模式,它能更好地體現學生的主體性,實現師生、生生交流,體現課堂的開放性與公平性.

  在教學中適當利用多媒體課件輔助教學,增強動感及直觀感,增大教學容量,提高教學質量.

  五、教學過程:

  (一)復習引入

  1.說一說你對生活中橢圓的認識.伴隨圖片展示使同學們感到橢圓就在我們身邊.

  意圖:

  (1)、從學生所關心的實際問題引入,使學生了解數學來源于實際.

  (2)、使學生更直觀、形象地了解后面要學的內容;

  2.手工操作演示橢圓的形成:取一條定長的細繩,把它的兩端固定在畫圖板上同一定點,套上筆拉緊繩子,移動筆尖畫出的軌跡是圓.再將這一條定長的細繩的兩端固定在畫圖板上的兩定點,當繩長大于兩點間的距離時,用鉛筆把繩子拉緊,使筆尖在圖板上慢慢移動,就可以畫出一個橢圓隨后動畫呈現.

  意圖:

  (1)通過畫圖給學生提供一個動手操作、合作學習的機會;調動學生學習的積極性

  (2)多媒體演示向學生說明橢圓的具體畫法,更直觀形象.

  (二)講解新課由學生畫圖及教師演示橢圓的形成過程,引導學生歸納定義.

  1.橢圓定義:

  平面內與兩個定點的距離之和等于常數2a的點的軌跡叫作橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距。

  練習1:已知兩個定點坐標分別是(—4,0)、(4,0),動點P到兩定點的距離之和等于8,則P點的軌跡是?

  練習2:已知兩個定點坐標分別是(—4,0)、(4,0),動點P到兩定點的距離之和等于6,則P點的軌跡是?

  通過兩個練習思考:橢圓定義需要注意什么(于意圖:讓學生通過練習反思畫圖,歸納定義,理解定義,突破了重點.

  (1)、當2a>|F1F2|時,是橢圓;(2)、當2a=|F1F2|時,是線段;

  2.根據定義推導橢圓標準方程:

  要求

  (1)學生在畫板上建立適當的坐標系,

  (2)根據定義推導橢圓的標準方程.

  同時引導學生類比圓回顧解析幾何研究問題的特點及求軌跡方程步驟

  意圖:讓學生自己去建系推導橢圓的標準方程,給學生較多的思考問題的時間和空間,變“被動”為“主動”,變“灌輸簡潔美”為“發現簡潔美”.教師結合猜想加以引導.化簡無理方程為難點通過發現問題解決問題突破難點.

橢圓及其標準方程 篇14

  一、教學目標

  (1)知識與能力目標:學習橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。

  (2)過程與方法目標:通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力;通過對橢圓標準方程的推導,使學生進一步掌握求曲線方程的一般方法,提高學生運用坐標法解決幾何問題的能力,并滲透數形結合和等價轉化的數學思想方法。

  (3)情感、態度與價值觀目標:通過讓學生大膽探索橢圓的定義和標準方程,激發學生學習數學的積極性,培養學生的學習興趣和創新意識,培養學生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。

  二、教學重點、難點

  (1)教學重點:橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線方程。

  (2)教學難點:橢圓標準方程的建立和推導。

  三、教學過程

  (一)創設情境,引入概念

  1、動畫演示,描繪出橢圓軌跡圖形。

  2、實驗演示。

  思考:橢圓是滿足什么條件的點的軌跡呢?

  (二)實驗探究,形成概念

  1、動手實驗:學生分組動手畫出橢圓。

  實驗探究:

  保持繩長不變,改變兩個圖釘之間的距離,畫出的橢圓有什么變化?

  思考:根據上面探究實踐回答,橢圓是滿足什么條件的點的軌跡?

  2、概括橢圓定義

  引導學生概括橢圓定義橢圓定義:平面內與兩個定點距離的和等于常數(大于)的點的軌跡叫橢圓。

  教師指出:這兩個定點叫橢圓的焦點,兩焦點的距離叫橢圓的焦距。

  思考:焦點為的橢圓上任一點M,有什么性質?

  令橢圓上任一點M,則有

  (三)研討探究,推導方程

  1、知識回顧:利用坐標法求曲線方程的一般方法和步驟是什么?

  2、研討探究

  問題:如圖已知焦點為的橢圓,且=2c,對橢圓上任一點M,有

  ,嘗試推導橢圓的方程。

  思考:如何建立坐標系,使求出的方程更為簡單?

  將各組學生的討論方案歸納起來評議,選定以下兩種方案,由各組學生自己完成設點、列式、化簡。

  方案一方案二

  按方案一建立坐標系,師生研討探究得到橢圓標準方程

  =1,其中b2=a2-c2(b>0);

  選定方案二建立坐標系,由學生完成方程化簡過程,可得出=1,同樣也有a2-c2=b2(b>0)。

  教師指出:我們所得的兩個方程=1和=1都是橢圓的標準方程。

  (四)歸納概括,方程特征

  1、觀察橢圓圖形及其標準方程,師生共同總結歸納

  (1)橢圓標準方程對應的橢圓中心在原點,以焦點所在軸為坐標軸;

  (2)橢圓標準方程形式:左邊是兩個分式的平方和,右邊是1;

  (3)橢圓標準方程中三個參數a,b,c關系:;

  (4)橢圓焦點的位置由標準方程中分母的大小確定;

  (5)求橢圓標準方程時,可運用待定系數法求出a,b的值。

  2、在歸納總結的基礎上,填下表

  標準方程

  圖形a,b,c關系焦點坐標焦點位置

  在x軸上

  在y軸上

  (五)例題研討,變式精析

  例1、求適合下列條件的橢圓的標準方程

  (1)兩個焦點的坐標分別是,橢圓上一點P到兩焦點距離和等于10。

  (2)兩焦點坐標分別是,并且橢圓經過點。

  例2、(1)若橢圓標準方程為及焦點坐標。

  (2)若橢圓經過兩點求橢圓標準方程。

  (3)若橢圓的一個焦點是,則k的值為。

  (A)(B)8(C)(D)32

  例3、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線段,求線段中點M的軌跡。

  (六)變式訓練,探索創新

  1、寫出適合下列條件的橢圓標準方程

  (1),焦點在x軸上;

  (2)焦點在x軸上,焦距等于4,并且經過點P;

  2、若方程表示焦點在y軸上的橢圓,則k的范圍。

  3、已知B,C是兩個定點,周長為16,求頂點A的軌跡方程。

  4、已知橢圓的焦距相等,求實數m的值。

  5、在橢圓上上求一點,使它與兩個焦點連線互相垂直。

  6、已知P是橢圓上一點,其中為其焦點且,求三解形面積。

  (七)小結歸納,提高認識

  師生共同歸納本節所學內容、知識規律以及所學的數學思想和方法。

  (八)作業訓練,鞏固提高

  課本第96頁習題§8。1第3題、第5題、第6題。

  課后思考題:

  1、知是橢圓的兩個焦點,AB是過的弦,則周長是。

  (A)2a(B)4a(C)8a(D)2a2b

  2、的兩個頂點A,B的坐標分別是邊AC,BC所在直線的斜

  率之積等于,求頂點C的軌跡方程。

  2、與圓外切,同時與圓內切,求動圓圓心的軌跡方程,并說明它是什么樣的曲線?

  教學設計說明

  橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。本節課內容的學習能很好地在課堂教學中展現新課程的理念,主要采用學生自主探究學習的方式,使培養學生的探索精神和創新能力的教學思想貫穿于本節課教學設計的始終。

  橢圓是生活中常見的圖形,通過實驗演示,創設生動而直觀的情境,使學生親身體會橢圓與生活聯系,有助于激發學生對橢圓知識的學習興趣;在橢圓概念引入的過程中,改變了直接給出橢圓概念和動畫畫出橢圓的方式,而采用學生動手畫橢圓并合作探究的學習方式,讓學生親身經歷橢圓概念形成的數學化過程,有利于培養學生觀察分析、抽象概括的能力。

  橢圓方程的化簡是學生從未經歷的問題,方程的推導過程采用學生分組探究,師生共同研討方程的化簡和方程的特征,可以讓學生主體參與橢圓方程建立的具體過程,使學生真正了解橢圓標準方程的來源,并在這種師生嘗試探究、合作討論的活動中,使學生體會成功的快樂,提高學生的數學探究能力,培養學生獨立主動獲取知識的能力。

  設計例題、習題的研討探究變式訓練,是為了讓學生能靈活地運用橢圓的知識解決問題,同時也是為了更好地調動、活躍學生的思維,發展學生數學思維能力,讓學生在解決問題中發展學生的數學應用意識和創新能力,同時培養學生大膽實踐、勇于探索的精神,開闊學生知識應用視野。

橢圓及其標準方程 篇15

  一、教材分析

  1、教材的地位及作用

  圓錐曲線是高考重點考查內容。“橢圓及其標準方程”是《圓錐曲線與方程》第一節內容,是繼學習圓以后運用“曲線和方程”理論解決具體的二次曲線的又一實例。

  從知識上說,它是運用坐標法研究曲線的幾何性質的又一次實際演練,同時它也是進一步研究橢圓幾何性質的基礎;

  從方法上說,它為后面研究雙曲線、拋物線提供了基本模式;

  所以,無論從教材內容,還是從教學方法上都起著承上啟下的作用,它是學好本章內容的關鍵。因此搞好這一節的教學,具有非常重要的意義。

  2、教學目標

  根據上述教材結構與內容分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

  (1)、知識目標:掌握橢圓的定義及其標準方程,通過對橢圓標準方程的探求,熟悉求曲線方程的一般方法。

  (2)、能力目標:讓學生通過自我探究、合作學習等,提高學生實際動手、合作學習以及運用知識解決實際問題的能力。

  (3)、情感目標:在教學中充分揭示“數”與“形”的內在聯系,體會數與形的統一,激發學生學習數學的興趣,培養學生勇于探索,勇于鉆研的精神。

  3、教學重點、難點

  教學重點:橢圓的定義及橢圓的標準方程。

  教學難點:橢圓標準方程的建立和推導。

  在學習本課前,學生已學習了直線與圓的方程,對曲線和方程的概念有了一些了解與運用的經驗,用坐標法研究幾何問題也有了初步的認識。但由于學生學習解析幾何時間還不長、學習程度也較淺,對坐標法解決幾何問題掌握還不夠。另外,學生對含有兩個根式之和(差)等式化簡的運算生疏,去根式的策略選擇不當等是導致“標準方程的推導”成為學習難點的直接原因。

  據以上對教材及學情的分析,確定橢圓的定義及其標準方程為本課的教學重點;橢圓標準方程的推導為本課的難點。

  4、教材處理

  根據新課程大綱要求,本節課的內容特點以及結合我班學生的實際情況,我把本節內容分2個課時進行教學。

  第一課時,主要研究橢圓的定義、標準方程的推導。

  第二課時,運用橢圓的定義求曲線的軌跡方程。

  二、教學方法和教學手段

  課堂教學中創設問題的情境,激發學生主動的發現問題解決問題,充分調動學生學習的主動性、積極性;有效地滲透數學思想方法,發展學生個性思維品質,這是本節課的教學原則。根據這樣的原則及所要完成的教學目標,我采用如下的教學方法和手段:

  教學方法:我采用的是引導發現法、探索討論法等。

  1、引導發現法:用動畫演示動點的軌跡,啟發學生歸納、概括橢圓定義。

  2、探索討論法:由學生通過聯想、歸納把原有的求軌跡方法遷移到新情況中,有利于學生對知識進行主動建構;

  有利于突出重點,突破難點,發揮其創造性。

  引導發現法和探索討論法是適應新課程體系的一種全新教學模式,它能更好地體現學生的主體性,實現師生、生生交流,體現課堂的開放性與公平性。

  教學手段:利用多媒體課件教學,化抽象為具體,降底學生學習難度,增強動感及直觀感,增大教學容量,提高教學質量。

  三、學法指導

  “授人以魚,不如授人以漁。”

  教會學生:

  1、動手嘗試。

  2、仔細觀察。

  3分析討論。

  4、抽象出概念,推出方程。

  這樣有利于學生發揮學習的主動性,使學生的學習過程成為在教師引導下的“再創造”過程。

  四、教學過程

  教學流程設計:認識橢圓→畫橢圓→定義橢圓→推導橢圓方程→橢圓方程知識講解→橢圓方程知識運用→本課小結→作業布置

  五、教學評價

  1、這節課圍繞“認識橢圓→畫橢圓→定義橢圓→推導橢圓方程→橢圓方程知識講解→橢圓方程知識運用”這一主線展開。

  2、教學中學生通過觀看動畫、動手實踐,自己總結出橢圓定義,符合從感性上升為理性的認識規律。

  3、在整個教學過程中,采用引導發現法、探索討論法等教學方法,注重數形結合等數學思想的滲透。培養學生勇于探索、勇于創新的精神。

橢圓及其標準方程(精選15篇) 相關內容:
  • 橢圓及其標準方程1

    教學目標 1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程; 2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程; 3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力; 4.通過橢圓的標準方程的推...

  • 橢圓及其標準方程1

    教學目標 1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程; 2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程; 3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力; 4.通過橢圓的標準方程的推...

  • 橢圓及其標準方程教案(通用2篇)

    教學目標:(一)知識目標:掌握橢圓的定義及其標準方程,能正確推導橢圓的標準方程.(二)能力目標:培養學生的動手能力、合作學習能力和運用所學知識解決實際問題的能力;培養學生運用類比、分類討論、數形結合思想解決問題的能力.(三)情感目標:...

  • 高中數學《橢圓及其標準方程》教案(精選9篇)

    一、教學內容解析1.地位與作用:本章是北師大版選修1—1的第二章《圓錐曲線與方程》,是高中數學解析幾何的第二大部分。解析幾何是數學中一個重要的分支,它聯系了數學中的數與形、代數與幾何等最基本對象之間的聯系。...

  • 橢圓及其標準方程教案2

    教學目標: (一)知識目標:掌握橢圓的定義及其標準方程,能正確推導橢圓的標準方程. (二)能力目標:培養學生的動手能力、合作學習能力和運用所學知識解決實際問題的能力;培養學生運用類比、分類討論、數形結合思想解決問題的能力. (三)情感目...

  • 橢圓及其標準方程教案

    橢圓是圓錐曲線中重要的一種,本節內容的學習是后繼學習其它圓錐曲線的基礎,坐標法是解析幾何中的重要數學方法,橢圓方程的推導是利用坐標法求曲線方程的很好應用實例。...

  • 橢圓及其標準方程(第1課時)教學設計

    一、教材內容分析本節是整個解析幾何部分的重要基礎知識。這一節課是在《直線和圓的方程》的基礎上,將研究曲線的方法拓展到橢圓,又是繼續學習橢圓幾何性質的基礎,同時還為后面學習雙曲線和拋物線作好準備。...

  • 高中數學第二冊第八章第一節《橢圓及其標準方程》說課教案

    我說課的題目是全日制普通高級中學教科書(試驗修訂本.必修)《數學》第二冊、第八章《圓錐曲線》、第一節《橢圓及其標準方程》。一、概說:1、教材分析:橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用...

  • 數學教案-橢圓及其標準方程1

    教學目標 1.掌握橢圓的定義,掌握橢圓標準方程的兩種形式及其推導過程; 2.能根據條件確定橢圓的標準方程,掌握運用待定系數法求橢圓的標準方程; 3.通過對橢圓概念的引入教學,培養學生的觀察能力和探索能力; 4.通過橢圓的標準方程的推...

  • 高中數學第二冊第八章第一節《橢圓及其標準方程》說課教案

    我說課的題目是全日制普通高級中學教科書(試驗修訂本.必修)《數學》第二冊、第八章《圓錐曲線》、第一節《橢圓及其標準方程》。一、概說:1、教材分析:橢圓及其標準方程是圓錐曲線的基礎,它的學習方法對整個這一章具有導向和引領作用...

  • 高二數學教案
主站蜘蛛池模板: 美女视频久久久 | 成在线人永久免费视频播放 | 久久99精品国产麻豆91樱花 | 天天人人 | 亚洲国产精品综合久久20 | 日本亚洲欧美高清专区vr专区 | 久久永久免费人妻精品 | 国产伦精品一区二区三区免 | 久久久久久久久福利 | 爱爱视频免费播放 | 成人一在线视频日韩国产 | 亚洲黄色免费看 | 三级理论日韩欧美 | 嗯好大好爽高潮了av大片 | 91小视频在线观看 | 国产高清在线视频观看 | 国产视频中文字幕 | 国产色综合一区二区三区 | 特级淫片女子高清视频在线观看 | 亚洲伦理一区二区三区 | 深夜精品福利 | 全部露出来毛走秀福利视频 | 妞干网精品 | 国产精品福利视频萌白酱 | 国产丰满果冻videossex | 在线视频毛片 | 亚洲精品16p| 日本道色综合久久影院 | 亚洲日本一区二区一本一道 | 日韩二区在线观看 | 中文字幕在线亚洲日韩6页 看久久毛片 | 在线精品国产一区二区三区 | 久久亚洲一区二区三 | 五月激情开心网 | 亚洲成人一区在线 | 草莓AV福利网站导航 | 日韩美女在线视频网站免费观看 | 国产成人精品综合在线观看 | 国精产品一区一区三区免费完 | 日本不卡精品 | 怦然心动2在线观看免费高清 |