九年級數學下冊《二次函數的圖像與性質(3)》教學教案(湘教版)
【知識與技能】
1.會用描點法畫二次函數y=ax2+bx+c的圖象.
2.會用配方法求拋物線y=ax2+bx+c的頂點坐標、開口方向、對稱軸、y隨x的增減性.
3.能通過配方求出二次函數y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數的性質求實際問題中的最大值或最小值.
【過程與方法】
1.經歷探索二次函數y=ax2+bx+c(a≠0)的圖象的作法和性質的過程,體會建立二次函數y=ax2+bx+c(a≠0)對稱軸和頂點坐標公式的必要性.
2.在學習y=ax2+bx+c(a≠0)的性質的過程中,滲透轉化(化歸)的思想.
【情感態度】
進一步體會由特殊到一般的化歸思想,形成積極參與數學活動的意識.
【教學重點】
①用配方法求y=ax2+bx+c的頂點坐標;②會用描點法畫y=ax2+bx+c的圖象并能說出圖象的性質.
【教學難點】
能利用二次函數y=ax2+bx+c(a≠0)的對稱軸和頂點坐標公式,解決一些問題,能通過對稱性畫出二次函數y=ax2+bx+c(a≠0)的圖象.
一、情境導入,初步認識
請同學們完成下列問題.
1.把二次函數y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數y=-2x2+6x-1的開口方向,對稱軸及頂點坐標.
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y=-2x2+6x-1的圖象.
5.二次函數y=-2x2+6x-1的y隨x的增減性如何?
【教學說明】上述問題教師應放手引導學生逐一完成,從而領會y=ax2+bx+c與y=a(x-h)2+k的轉化過程.
二、思考探究,獲取新知
探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
學生回答、教師點評:
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對稱軸和頂點坐標.
2.列表,描點,連線畫出對稱軸右邊的部分圖象.
3.利用對稱點,畫出對稱軸左邊的部分圖象.
探究2 二次函數y=ax2+bx+c圖象的性質有哪些?你能試著歸納嗎?