九年級數(shù)學(xué)下冊《二次函數(shù)的圖像與性質(zhì)》教學(xué)教案(通用3篇)
九年級數(shù)學(xué)下冊《二次函數(shù)的圖像與性質(zhì)》教學(xué)教案 篇1
【知識與技能】
1.會用描點(diǎn)法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認(rèn)識、理解和掌握其性質(zhì).
2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動手畫圖,同學(xué)之間交流討論,達(dá)到對二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學(xué)的興趣,調(diào)動學(xué)生的積極性.
【教學(xué)重點(diǎn)】
1.會畫y=ax2(a>0)的圖象.
2.理解,掌握圖象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會教學(xué)過程.
一、情境導(dǎo)入,初步認(rèn)識
問題1 請同學(xué)們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點(diǎn)法畫一個(gè)函數(shù)圖象呢?
【教學(xué)說明】 ①略;②列表、描點(diǎn)、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學(xué)說明】①要求同學(xué)們?nèi)巳藙邮?按“列表、描點(diǎn)、連線”的步驟畫圖y=x2的圖象,同學(xué)們畫好后相互交流、展示,表揚(yáng)畫得比較規(guī)范的同學(xué).
②從列表和描點(diǎn)中,體會圖象關(guān)于y軸對稱的特征.
③強(qiáng)調(diào)畫拋物線的三個(gè)誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢.
如圖(1)就是y=x2的圖象的錯(cuò)誤畫法.
誤區(qū)二:并非對稱點(diǎn),存在漏點(diǎn)現(xiàn)象,導(dǎo)致拋物線變形.
如圖(2)就是漏掉點(diǎn)(0,0)的y=x2的圖象的錯(cuò)誤畫法.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點(diǎn)的同時(shí),還需要向兩旁無限延伸,而并非到某些點(diǎn)停止.
九年級數(shù)學(xué)下冊《二次函數(shù)的圖像與性質(zhì)》教學(xué)教案 篇2
【知識與技能】
1.會用描點(diǎn)法畫二次函數(shù)y=ax2+bx+c的圖象.
2.會用配方法求拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)、開口方向、對稱軸、y隨x的增減性.
3.能通過配方求出二次函數(shù)y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數(shù)的性質(zhì)求實(shí)際問題中的最大值或最小值.
【過程與方法】
1.經(jīng)歷探索二次函數(shù)y=ax2+bx+c(a≠0)的圖象的作法和性質(zhì)的過程,體會建立二次函數(shù)y=ax2+bx+c(a≠0)對稱軸和頂點(diǎn)坐標(biāo)公式的必要性.
2.在學(xué)習(xí)y=ax2+bx+c(a≠0)的性質(zhì)的過程中,滲透轉(zhuǎn)化(化歸)的思想.
【情感態(tài)度】
進(jìn)一步體會由特殊到一般的化歸思想,形成積極參與數(shù)學(xué)活動的意識.
【教學(xué)重點(diǎn)】
①用配方法求y=ax2+bx+c的頂點(diǎn)坐標(biāo);②會用描點(diǎn)法畫y=ax2+bx+c的圖象并能說出圖象的性質(zhì).
【教學(xué)難點(diǎn)】
能利用二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸和頂點(diǎn)坐標(biāo)公式,解決一些問題,能通過對稱性畫出二次函數(shù)y=ax2+bx+c(a≠0)的圖象.
一、情境導(dǎo)入,初步認(rèn)識
請同學(xué)們完成下列問題.
1.把二次函數(shù)y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數(shù)y=-2x2+6x-1的開口方向,對稱軸及頂點(diǎn)坐標(biāo).
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y(tǒng)=-2x2+6x-1的圖象.
5.二次函數(shù)y=-2x2+6x-1的y隨x的增減性如何?
【教學(xué)說明】上述問題教師應(yīng)放手引導(dǎo)學(xué)生逐一完成,從而領(lǐng)會y=ax2+bx+c與y=a(x-h)2+k的轉(zhuǎn)化過程.
二、思考探究,獲取新知
探究1 如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
學(xué)生回答、教師點(diǎn)評:
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對稱軸和頂點(diǎn)坐標(biāo).
2.列表,描點(diǎn),連線畫出對稱軸右邊的部分圖象.
3.利用對稱點(diǎn),畫出對稱軸左邊的部分圖象.
探究2 二次函數(shù)y=ax2+bx+c圖象的性質(zhì)有哪些?你能試著歸納嗎?
九年級數(shù)學(xué)下冊《二次函數(shù)的圖像與性質(zhì)》教學(xué)教案 篇3
【知識與技能】
1.會用描點(diǎn)法畫函數(shù)y=ax2(a<0)的圖象,并根據(jù)圖象認(rèn)識、理解和掌握其性質(zhì).
2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a<0)的圖象與性質(zhì)解決簡單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a<0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動手畫圖,同學(xué)之間交流討論,達(dá)到對二次函數(shù)y=ax2(a≠0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學(xué)的興趣,調(diào)動學(xué)習(xí)的積極性.
【教學(xué)重點(diǎn)】
①會畫y=ax2(a<0)的圖象;②理解、掌握圖象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象的性質(zhì)及其探究過程和方法的體會.
【知識與技能】
1.會用描點(diǎn)法畫函數(shù)y=ax2(a<0)的圖象,并根據(jù)圖象認(rèn)識、理解和掌握其性質(zhì).
2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a<0)的圖象與性質(zhì)解決簡單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a<0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動手畫圖,同學(xué)之間交流討論,達(dá)到對二次函數(shù)y=ax2(a≠0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學(xué)的興趣,調(diào)動學(xué)習(xí)的積極性.
【教學(xué)重點(diǎn)】
①會畫y=ax2(a<0)的圖象;②理解、掌握圖象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象的性質(zhì)及其探究過程和方法的體會.
【知識與技能】
1.會用描點(diǎn)法畫函數(shù)y=ax2(a<0)的圖象,并根據(jù)圖象認(rèn)識、理解和掌握其性質(zhì).
2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a<0)的圖象與性質(zhì)解決簡單的實(shí)際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a<0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗(yàn),培養(yǎng)觀察、思考、歸納的良好思維習(xí)慣.
【情感態(tài)度】
通過動手畫圖,同學(xué)之間交流討論,達(dá)到對二次函數(shù)y=ax2(a≠0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學(xué)的興趣,調(diào)動學(xué)習(xí)的積極性.
【教學(xué)重點(diǎn)】
①會畫y=ax2(a<0)的圖象;②理解、掌握圖象的性質(zhì).
【教學(xué)難點(diǎn)】
二次函數(shù)圖象的性質(zhì)及其探究過程和方法的體會.