課題:2.2二次函數的圖像(1)
教學目標:
1、經歷描點法畫函數圖像的過程;
2、學會觀察、歸納、概括函數圖像的特征;
3、掌握 型二次函數圖像的特征;
4、經歷從特殊到一般的認識過程,學會合情推理。
教學重點:
型二次函數圖像的描繪和圖像特征的歸納
教學難點:
選擇適當的自變量的值和相應的函數值來畫函數圖像,該過程較為復雜。
教學設計:
一、回顧知識
前面我們在學習正比例函數、一次函數和反比例函數時時如何進一步研究這些函數的? 先(用描點法畫出函數的圖像,再結合圖像研究性質。)
引入:我們仿照前面研究函數的方法來研究二次函數,先從最特殊的形式即 入手。因此本節課要討論二次函數 ( )的圖像。
板書課題:二次函數 ( )圖像
二、探索圖像
1、 用描點法畫出二次函數 和 圖像
(1) 列表
引導學生觀察上表,思考一下問題:
①無論x取何值,對于 來說,y的值有什么特征?對于 來說,又有什么特征?
②當x取 等互為相反數時,對應的y的值有什么特征?
(2) 描點(邊描點,邊總結點的位置特征,與上表中觀察的結果聯系起來).
(3) 連線,用平滑曲線按照x由小到大的順序連接起來,從而分別得到 和 的圖像。
2、 練習:在同一直角坐標系中畫出二次函數 和 的圖像。
學生畫圖像,教師巡視并輔導學困生。(利用實物投影儀進行講評)
3、二次函數 ( )的圖像
由上面的四個函數圖像概括出:
(1) 二次函數的 圖像形如物體拋射時所經過的路線,我們把它叫做拋物線,
(2) 這條拋物線關于y軸對稱,y軸就是拋物線的對稱軸。
(3) 對稱軸與拋物線的交點叫做拋物線的頂點。注意:頂點不是與y軸的交點。
(4) 當 時,拋物線的開口向上,頂點是拋物線上的最低點,圖像在x軸的上方(除頂點外);當 時,拋物線的開口向下,頂點是拋物線上的最高點圖像在x軸的 下方(除頂點外)。
(最好是用幾何畫板演示,讓學生加深理解與記憶)
三、課堂練習
觀察二次函數 和 的圖像
(1) 填空:
拋物線
頂點坐標
對稱軸
位 置
開口方向
(2)在同一坐標系內,拋物線 和拋物線 的位置有什么關系?如果在同一個坐標系內畫二次函數 和 的圖像怎樣畫更簡便?
(拋物線 與拋物線 關于x軸對稱,只要畫出 與 中的一條拋物線,另一條可利用關于x軸對稱來畫)
四、例題講解
例題:已知二次函數 ( )的圖像經過點(-2,-3)。
(1) 求a 的值,并寫出這個二次函數的解析式。
(2) 說出這個二次函數圖像的頂點坐標、對稱軸、開口方向和圖像的位置。
練習:(1)課本第31頁課內練習第2題。
(2) 已知拋物線y=ax2經過點a(-2,-8)。
(1)求此拋物線的函數解析式;
(2)判斷點b(-1,- 4)是否在此拋物線上。