10.3 解二元一次方程組(精選14篇)
10.3 解二元一次方程組 篇1
教學目標:1. 能熟練地用代入消元法解簡單的二元一次方程組2. 從解方程的過程中體會轉(zhuǎn)化的思想方法教學重點:用代入消元法解二元一次方程組教學難點:用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù)教學過程:一、情境創(chuàng)設(shè)根據(jù)籃球比賽規(guī)則;贏一場得2分,平一場得1分,在某次中學籃球聯(lián)賽中,某球隊賽了12場,贏了x場,輸了y場,共各20分.可以得出方程組: x+y=12 2x+y=20(學生思考,列出方程)二、新課講授如何解上面的二元一次方程組呢? x+y=12 ①2x+y=20 ②(學生主動探索,嘗試,體會消元的方法)解:由①得:y=12-x ③將③ 代入②得: 2x+12x-x=20解這個二元一次方程,得x=8將x=8代入③,得y=4所以原方程組的解是 x=8y=4注:①二元一次方程組的解是一對數(shù)值,而不是一個單純的x值或y值.②算出結(jié)果后要做心算檢驗,以養(yǎng)成習慣問題:(引導(dǎo)思維拓展)①你是如何解方程組的?②每一步的依據(jù)是什么?③還有其它的方法嗎?(能否通過消去x解方程?)代入消元法:將方程組的一個方程中的某個未知數(shù)據(jù)用含有另一個未知數(shù)的代數(shù)式表示,并代入另一個方程,從而消去一個未知數(shù),把解二元一次方程轉(zhuǎn)化為解一元一次方程,這種解方程組的方法,稱為代入消元法,簡稱代入法.(學生歸納、總結(jié)、并理解)點評:用代入消元法解二元一次方程組方法不唯一,比如:上題中也可以用y來表示x,通過消去x 來解方程.即:由①得:x=12-y……③,將③代入②得……即使用x來表示y,方法也不是唯一的,可以由①得y=12-x,也可以由②得y=20-2x……三、例題教學:解方程組 x+3y=0 3x+2y=92(板書示范,學生思考回答)步驟1.用一個未知數(shù)表示另一個未知數(shù);2.將表示后的未知數(shù)代入方程;3.解此方程4.求方程組的一對解.四、學生練習p110 1、2、3(學生板演)五、拓展延伸1.解方程組 3x=1-2y3x+4y=-7(整體代入法)2.已知 x+y=k 2x+3y=k六、課時小結(jié):1. 用代入法解二元一次方程組的步驟?2. 任意一個二元一次方程都能用代入消元法解嗎?舉例說明.七、作業(yè)p112 1、(1)(4) 2、3、
10.3 解二元一次方程組 篇2
一.教學目標(一)教學知識點1.代入消元法解二元一次方程組.2.解二元一次方程組時的“消元”思想,“化未知為已知”的化歸思想.(二)能力訓(xùn)練要求1.會用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.(三)情感與價值觀要求1.在學生了解二元一次方程組的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問題為簡單問題的化歸思想中,享受學習數(shù)學的樂趣,提高學習數(shù)學的信心.2.培養(yǎng)學生合作交流,自主探索的良好習慣.二.教學重點1.會用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學研究中“化未知為已知”的化歸思想.三.教學難點1.“消元”的思想.2.“化未知為已知”的化歸思想.四.教學方法啟發(fā)——自主探索相結(jié)合.教師引導(dǎo)學生回憶一元一次方程解決實際問題的方法并從中啟發(fā)學生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.五.教具準備投影片兩張:第一張:例題(記作§7.2 a);第二張:問題串(記作§7.2 b).六.教學過程ⅰ.提出疑問,引入新課[師生共憶]上節(jié)課我們討論過一個“希望工程”義演的問題;沒去觀看義演的成人有x個,兒童有y個,我們得到了方程組 成人和兒童到底去了多少人呢?[生]在上一節(jié)課的“做一做”中,我們通過檢驗 是不是方程x+y=8和方程5x+3y=34,得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個人和3個人.[師]但是,這個解是試出來的.我們知道二元一次方程的解有無數(shù)個.難道我們每個方程組的解都去這樣試?[生]太麻煩啦.[生]不可能.[師]這就需要我們學習二元一次方程組的解法.ⅱ.講授新課[師]在七年級第一學期我們學過一元一次方程,也曾碰到過“希望工程”義演問題,當時是如何解的呢?[生]解:設(shè)成人去了x個,兒童去了(8-x)個,根據(jù)題意,得:5x+3(8-x)=34解得x=5將x=5代入8-x=8-5=3答:成人去了5個,兒童去了3個.[師]同學們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?[生]列二元一次方程組設(shè)出有兩個未知數(shù)成人去了x個,兒童去了y個.列一元一次方程設(shè)成人去了x個,兒童去了(8-x)個.y應(yīng)該等于(8-x).而由二元一次方程組的一個方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個方程5x+3y=34相比較,把5x+3y=34中的“y”用“8-x”代替就轉(zhuǎn)化成了一元一次方程.[師]太好了.我們發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法——即將新知識轉(zhuǎn)化為舊知識便可.如何轉(zhuǎn)化呢?[生]上一節(jié)課我們就已知道方程組的兩個未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.[師]這位同學很善于思考.他用了我們在數(shù)學研究中“化未知為已知”的化歸思想,從而使問題得到解決.下面我們完整地解一下這個二元一次方程組.解: 由①得 y=8-x ③將③代入②得5x+3(8-x)=34解得x=5把x=5代入③得y=3.所以原方程組的解為 下面我們試著用這種方法來解答上一節(jié)的“誰的包裹多”的問題.[師生共析]解二元一次方程組: 分析:我們解二元一次方程組的第一步需將其中的一個方程變形用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.解:由①得x=2+y ③將③代入②得(2+y)+1=2(y-1)解得y=5把y=5代入③,得x=7.所以原方程組的解為 即老牛馱了7個包裹,小馬馱了5個包裹.[師]在解上面兩個二元一次方程組時,我們都是將其中的一個方程變形,即用其中一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后代入第二個未變形的方程,從而由“二元”轉(zhuǎn)化為“一元”而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們再來看兩個例子.出示投影片(§7.2 a)[例題]解方程組(1) (2) (由學生自己完成,兩個同學板演).解:(1)將②代入①,得3× +2y=83y+9+4y=167y=7y=1將y=1代入②,得x=2所以原方程組的解是 (2)由②,得x=13-4y ③將③代入①,得2(13-4y)+3y=16-5y=-10y=2將y=2代入③,得x=5所以原方程組的解是 [師]下面我們來討論幾個問題:出示投影片(§7.2 b)(1)上面解方程組的基本思路是什么?(2)主要步驟有哪些?(3)我們觀察例1和例2的解法會發(fā)現(xiàn),我們在解方程組之前,首先要觀察方程組中未知數(shù)的特點,盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關(guān)鍵的一步.你認為選擇未知數(shù)有何特點的方程變形好呢?(由學生分組討論,教師深入?yún)⑴c到學生討論中,發(fā)現(xiàn)學生在自主探索、討論過程中的獨特想法)[生]我來回答第一問:解二元一次方程組的基本思路是消元,把“二元”變?yōu)椤耙辉?[生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個方程中選擇一個適當?shù)姆匠蹋阉冃螢橛靡粋未知數(shù)的代數(shù)式表示另一個未知數(shù).第二步:把表示另一個未知數(shù)的代數(shù)式代入沒有變形的另一個方程,可得一個一元一次方程.第三步:解這個一元一次方程,得到一個未知數(shù)的值.第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個方程或變形后的方程(一般代入變形后的方程),求得另一個未知數(shù)的值.第五步:用“{”把原方程組的解表示出來.第六步:檢驗(口算或筆算在草稿紙上進行)把求得的解代入每一個方程看是否成立.[師]這個組的同學總結(jié)的步驟真棒,甚至連我們平時容易忽略的檢驗問題也提了出來,很值得提倡.在我們數(shù)學學習的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗自己答案正確與否的習慣.[生]老師,我代表我們組來回答第三個問題.我們認為用代入消元法解二元一次方程組時,盡量選取一個未知數(shù)的分數(shù)是1的方程進行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對值較小的方程變形.但我們也有一個問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡便,有沒有更簡捷的方法呢?[師]這個問題提的太好了.下面同學們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請把你的解答過程寫到黑板上來.[生]解:由②得2x=y+3 ③③兩邊同時乘以2,得4x=2y+6 ④由④得2y=4x-6把⑤代入①得3x+(4x-6)=8解得7x=14,x=2把x=2代入③得y=1.所以原方程組的解為 [師]真了不起,能把我們所學的知識靈活應(yīng)用,而且不拘一格,將“2y”整體上看作一個未知數(shù)代入方程①,這是一個“科學的發(fā)明”.ⅲ.隨堂練習課本p1921.用代入消元法解下列方程組解:(1) 將①代入②,得x+2x=12x=4.把x=4代入①,得y=8所以原方程組的解為 (2) 將①代入②,得4x+3(2x+5)=65解得x=5把x=5代入①得y=15所以原方程組的解為 (3) 由①,得x=11-y ③把③代入②,得11-y-y=7y=2把y=2代入③,得x=9所以原方程組的解為 (4) 由②,得x=3-2y ③把③代入①,得3(3-2y)-2y=9得y=0把y=0代入③,得x=3所以原方程組的解為 注:在隨堂練習中,可以鼓勵學生通過自主探索與交流,各個學生消元的具體方法可能不同,不必強調(diào)解答過程統(tǒng)一.ⅳ.課時小結(jié)這節(jié)課我們介紹了二元一次方程組的第一種解法——代入消元法.了解到了解二元一次方程組的基本思路是“消元”即把“二元”變?yōu)椤耙辉?主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程的解.ⅴ.課后作業(yè)1.課本習題7.22.解答習題7.2第3題ⅵ.活動與探究已知代數(shù)式x2+px+q,當x=-1時,它的值是-5;當x=-2時,它的值是4,求p、q的值.過程:根據(jù)代數(shù)式值的意義,可得兩個未知數(shù)都是p、q的方程,即當x=-1時,代數(shù)式的值是-5,得(-1)2+(-1)p+q=-5 ①當x=-2時,代數(shù)式的值是4,得(-2)2+(-2)p+q=4 ②將①、②兩個方程整理,并組成方程組 解方程組,便可解決.結(jié)果:由④得q=2p把q=2p代入③,得-p+2p=-6解得p=-6把p=-6代入q=2p=-12所以p、q的值分別為-6、-12.七.板書設(shè)計
§7.2 解二元一次方程組(一)一、“希望工程”義演二、“誰的包裹多”問題三、例題四、解方程組的基本思路:消元即二元—→一元五、解二元一次方程組的基本步驟
10.3 解二元一次方程組 篇3
10.3 解二元一次方程組(二)教學目標:1. 會用加減消元法解二元一次方程組.2. 能根據(jù)方程組的特點,適當選用代入消元法和加減消元法解二元一次方程組.3. 了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.教學重點:加減消元法的理解與掌握教學難點:加減消元法的靈活運用教學方法:引導(dǎo)探索法,學生討論交流教學過程:一、情境創(chuàng)設(shè)買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價各是多少?設(shè)蘋果汁、橙汁單價為x元,y元.我們可以列出方程 3x+2y=23 5x+2y=33問:如何解這個方程組?二、探索活動活動一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?2、這些方法與代入消元法有何異同?3、這個方程組有何特點?解法一: 3x+2y=23① 5x+2y=33②由①式得 ③把③式代入②式33解這個方程得: y=4把y=4代入③式則 所以原方程組的解是 x=5y=4解法二: 3x+2y=23① 5x+2y=33②由①—②式:3x+2y-(5x+2y)=23-333x-5x=-10解這個方程得: x=5把x=5代入①式,3×5+2y=23解這個方程得 y=4 所以原方程組的解是 x=5y=4 把方程組的兩個方程(或先作適當變形)相加或相減,消去其中一個未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的方法叫做加減消元法(elimination by addition or subtraction) ,簡稱加減法.三、例題教學:例1.解方程組 x+2y=1① 3x-2y=5②解:①+②得,4x=6 將 代入①,得解這個方程得: 所以原方程組的解是 鞏固練習(一):練一練 1.(1)例2.解方程組 5x-2y=4① 2x-3y=-5②解:①×3,得15x-6y=12③②×3,得4x-6y=-10 ④③—④,得: 11x=22 解這個方程得 x=2將x=2代入①,得5×2-2y=4解這個方程得: y=3所以原方程組的解是 x=2y=3鞏固練習(二):練一練 1.(2) (3) (4) 2.四、思維拓展:解方程組: 五、小結(jié):1、掌握加減消元法解二元一次方程組2、靈活選用代入消元法和加減消元法解二元一次方程組六、作業(yè)習題10.3 1.(3) (4) 2.
10.3 解二元一次方程組 篇4
一、 關(guān)于教材地位和作用的分析
《 二元一次方程組的解法(5)》是在前面學習了列一元一次方程解應(yīng)用題及二元一次方程組的解法(代入消元法和加減消元法)基礎(chǔ)上的一節(jié)綜合實際應(yīng)用課。借助二元一次方程組解決一些簡單的實際問題,這是數(shù)學聯(lián)系實際的一個重要方面。對于含有多個未知數(shù)的實際問題,利用方程組去解決,其分析方法和解題步驟與列一元一次方程類似,而在列方程方面常比列一元一次方程容易些。教材在讓學生在掌握了二元一次方程組的解法后,再次體驗二元一次方程組與現(xiàn)實生活的聯(lián)系和作用。通過本節(jié)課的教學,可使學生領(lǐng)悟到數(shù)學來源與實踐,又反過來作用于實踐的辨證唯物主義思想。這對學生進一步學習數(shù)學,將起到積極的作用。
二、 關(guān)于教學目標的確定
。ㄒ唬 目標分析
知識和技能目標:
1、 會根據(jù)具體問題中的數(shù)量關(guān)系列出二元一次方程組及求解
2、 能檢驗結(jié)果是否符合實際意義
過程和方法目標
1、 通過使用代數(shù)中的方程去反映現(xiàn)實中的相等關(guān)系,體會代數(shù)方法的優(yōu)越性
2、 在列方程組解應(yīng)用題的過程中,體會列方程組往往比列一元一次方程容易。
3、 通過解應(yīng)用題的學習,滲透把未知轉(zhuǎn)化為已知的辨證思想,從而培養(yǎng)學生分析問題和解決問題的能力
情感與態(tài)度目標
1、 學生在與同伴交流的學習過程中,形成良好的學習方式和學習態(tài)度,樹立學習數(shù)學的自信心。
2、 通過列方程組解應(yīng)用題的學習,認識到數(shù)學的價值。
。ǘ 重難點分析
教學重點:根據(jù)實際問題的數(shù)量關(guān)系,找出兩個等量關(guān)系,列出二元一次方程組。
教學難點:正確找出兩個實際問題中的兩個等量關(guān)系,并把他們列成兩個方程。
難點突破采取的措施:
1、 可多種方法解決的實際問題引入,然后由師生共同尋找兩個等量關(guān)系,多次體驗列二元一次方程組解決實際問題的優(yōu)越性
2、 用填空和選擇的多種題型來尋找題目中的等量關(guān)系
3、 例題中兩個問題將它們分列開,將難點分散
三、 關(guān)于教學方法的說明
從一題多解的和尚吃饅頭的引入開始,引導(dǎo)學生尋找等量關(guān)系,在合作中尋找解題途徑,教師在此過程中做好一個組織者,合作者,引導(dǎo)者的作用,關(guān)注學生在此過程中的生命成長。幫助學生在方程探案中尋找等量關(guān)系,然后找到等量關(guān)系后,讓學生嘗試根據(jù)等量關(guān)系來列二元一次方程組解決問題,接著讓學生在填空和選擇中尋找等量關(guān)系,列方程組,最后是課本例題的教學,讓學生自己尋找問題和分析問題,課外,讓學生自己編題,領(lǐng)悟方法,這種教學方法符合以下教育過程的規(guī)律:
1、 遵循由舊引新,由淺入深,由特殊到一般再到特殊。體現(xiàn)掌握知識和發(fā)展智力相統(tǒng)一的規(guī)律。
2、 創(chuàng)設(shè)問題情境,教師不斷啟發(fā)和引導(dǎo)學生思考,由易到難,化整為簡,體現(xiàn)教師在教學過程中的組織者、合作者和引導(dǎo)者的作用。
。ǘ⿲W法分析
這種教學方法實際上也教給了學生一種學習方法,使學生學會觀察,注意生活中的實際問題,學會自己探究知識分析問題,解決問題,學會尋找、發(fā)現(xiàn),學會歸納總結(jié),逐步掌握獲取知識的能力。
(三)教學手段
通過多媒體輔助教學,擴大教學容量,提高課堂教學效率。
四、 關(guān)于教學過程的設(shè)計。
。ㄒ唬 導(dǎo)入設(shè)計
先用輕松的師生對白,讓學生進入問題,討論多種方法解決實際問題,激活學生的思維細胞,讓學生進入學習的狀態(tài),通過體驗新知識的優(yōu)越性,激發(fā)學生學習新知識的積極性。
。ǘ 嘗試練習
通過導(dǎo)入中的體驗,讓學生初步嘗試解決問題的能力,在此過程中,有學生成功了,他們嘗到了學習新知識的一種成就感,有學生失敗了,鼓勵他們繼續(xù)學習,培養(yǎng)克服困難的信心和勇氣。
嘗試練習
1、方程探案記: 你知道盜賊如何分贓嗎
一幫強盜搶來一批布匹,躲在了樹林里分贓,由于傍晚天色太黑,看不清他們有多少人,只聽見帶頭的一個強盜喊著說:“每人分布六匹,還剩5匹,每人分布7匹,又少8匹。“請你根據(jù)他的說話聲來判斷,究竟有多少強盜,多少布匹?
大家一起探討
。ㄈ 范例設(shè)計
通過對課本例題的難點進行分解,把一個較復(fù)雜的問題,分解成兩個小問題,將難點分解。
某蔬菜公司收購到某種蔬菜140噸,準備加工后上市銷售。該公司的加工能力是:每天可以精加工6噸或粗加工16噸,F(xiàn)計劃用15天完成加工任務(wù)。
問:1、該公司應(yīng)安排幾天粗加工,幾天精加工, 才能按期完成任務(wù)?
2、如果每噸蔬菜粗加工后的利潤為1000元,精加工后為20__元,那么照此安排,該公司出售這些加工后的蔬菜共可獲利多少元?
。ㄋ模┓答伨毩
通過多種題型:填空、選擇及問答的多種形式,培養(yǎng)學生從多角度地分析問題、解決問題的能力。最后,讓學生根據(jù)課題來自編應(yīng)用題,體現(xiàn)了數(shù)學在實際中的應(yīng)用價值。
(五) 歸納小結(jié)
教師啟發(fā),學生歸納列二元一次方程組解應(yīng)用題的一般步驟和方法。
10.3 解二元一次方程組 篇5
教學建議
一、重點、難點分析
本節(jié)的教學重點是使學生學會用代入法.教學難點 在于靈活運用代入法,這要通過一定數(shù)量的練習來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
二、知識結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.掌握用代入法解二元一次方程組的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
(二)能力訓(xùn)練點
1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學生的運算技巧,養(yǎng)成檢驗的習慣.
。ㄈ┑掠凉B透點
消元,化未知為已知的數(shù)學思想.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學習,滲透化歸的數(shù)學美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:引導(dǎo)發(fā)現(xiàn)法、練習法,嘗試指導(dǎo)法.
2.學生學法:在前面已經(jīng)學過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程中始終應(yīng)抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
。ǎ┲攸c
使學生會用代入法解二元一次方程組.
(二)難點
靈活運用代入法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
。ㄋ模┙鉀Q辦法
一方面復(fù)習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數(shù)較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學具準備
電腦或投影儀、自制膠片.
六、師生互動活動設(shè)計
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課我們將學習用代入法求二元一次方程組的解.
(二)整體感知
從復(fù)習用一個未知量表達另一個未知量的方法,從而導(dǎo)入 運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
(三)教學步驟
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
。2)選擇題:
二元一次方程組 的解是
A. B. C. D.
【教法說明】 第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習了上節(jié)課的重點,又成為導(dǎo)入 新課的材料.
通過上節(jié)課的學習,我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學習.
這樣導(dǎo)入 ,可以激發(fā)學生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.
設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得
設(shè)買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
【教法說明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說用代入法解二元一次方程組的基本思路嗎?
學生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
。1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
。3)求出 后代入哪個方程中求 比較簡單?(①)
學生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結(jié)果是否正確?
學生活動:口答檢驗.
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
【教法說明】給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學生活動:嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
(1)變形( )
。2)代入消元( )
。3)解一元一次方程得( )
。4)把 代入 求解
練習:P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
、儆 可以得到用 表示 .
、谠 中,當 時, ;當 時, ,則 ; .
③選擇:若 是方程組 的解,則( )
A. B. C. D.
。ㄋ模┛偨Y(jié)、擴展
1.解二元一次方程組的思想:
2.用代入法解二元一次方程組的步驟.
3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學習,我們要熟練運用代入法解二元一次方程組,并能檢驗結(jié)果是否正確.
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).
。ǘ┻x做題:P15 B組1.
參考答案
(一)1.(2) (4)
2.(1) (2) (3) (4)
。ǘ ,
10.3 解二元一次方程組 篇6
教學建議
1.教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:本小節(jié)的重點是使學生學會.這也是一種全新的知識,與在一元一次方程兩邊都加上、減去同一個數(shù)或同一個整式,或者都乘以、除以同一個非零數(shù)的情況是不一樣的,但運用這項知識(這里也表現(xiàn)為一種方法),有時可以簡捷地求出二元一次方程組的解,因此學生同樣會表現(xiàn)出一種極大的興趣.必須充分利用學生學會這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學生學會,并能靈活運用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學中必須引起足夠重視.
難點:靈活運用加減法的技巧,以便將方程變形為比較簡單和計算比較簡便,這也要通過一定數(shù)量的練習來解決.
2.教法建議
。1)本節(jié)是通過一個引例,介紹了加減法解方程組的基本思想和解題過程.教學時,要引導(dǎo)學生觀察這個方程組中未知數(shù)系數(shù)的特點.通過觀察讓學生說出,在兩個方程中y的系數(shù)互為相反數(shù)或在兩個方程中x的系數(shù)相等,讓學生自己動腦想一想,怎么消元比較簡便,然后引出加減消元法.
。2)講完加減法后,課本通過三個例題加以鞏固,這三個例題是由淺入深的,講解時也要先讓學生觀察每個方程組未知數(shù)系數(shù)的特點,然后讓學生說出每個方程組的解法,例題1老師自己板書,剩下的兩個例題讓學生上黑板板書,然后老師點評.
。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實質(zhì)都是消元,即通過消去一個未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說:
這時學生對解題方法比較熟悉,但還沒有上升到理論的高度,這時教師應(yīng)及時點撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問題、解決問題的思想方法.
。ǖ谝徽n時)
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.使學生掌握的步驟.
2.能運.
。ǘ┠芰τ(xùn)練點
1.培養(yǎng)學生分析問題、解決問題的能力.
2.訓(xùn)練學生的運算技巧.
。ㄈ┑掠凉B透點
消元,化未知為已知的轉(zhuǎn)化思想.
。ㄋ模┟烙凉B透點
滲透化歸的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:談話法、討論法.
2.學生學法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對值相等的值后即可利用加減法進行消元,同時在運算中注意歸納解題的技巧和解題的方法.
三、重點、難點、疑點及解決辦法
(-)重點
使學生學會.
。ǘ╇y點
靈活運用加減消元法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
。ㄋ模┙鉀Q辦法
只要將相同未知量前的系數(shù)化為絕對值相等的值即可利用加減法進行消元.
四、課時安排
一課時.
五、教具學具準備
投影儀、膠片.
六、師生互動活動設(shè)計
1.教師通過復(fù)習上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入 新課即加減法解二元一次方程組.
2.通過引例進一步讓學生探究是用代入法還是用加減法解方程組更簡單,讓學生進一步明確用加減法解題的優(yōu)越性.
3.通過反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗,進而上升到理論.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課通過復(fù)習代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.
。ǘ┱w感知
加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對值相等的值,即可使用加減法消元.故在教學中應(yīng)反復(fù)教會學生觀察并抓住解題的特征及辦法從而方便解題.
。ㄈ┙虒W過程
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)用代入法解二元一次方程組的基本思想是什么?
。2)用代入法解下列方程組,并檢驗所得結(jié)果是否正確.
學生活動:口答第(1)題,在練習本上完成第(2)題,一個同學說出結(jié)果.
上面的方程組中,我們用代入法消去了一個未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對于二元一次方程組,是否存在其他方法,也可以消去一個未知數(shù),達到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學習的內(nèi)容.
【教法說明】由練習導(dǎo)入 新課,既復(fù)習了舊知識,又引出了新課題,教學過程 中還可以進行代入法和加減法的對比,訓(xùn)練學生根據(jù)題目的特點選取適當?shù)姆椒ń忸}.
2.探索新知,講授新課
第(2)題的兩個方程中,未知數(shù) 的系數(shù)有什么特點?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個一元一次方程,進而求得二元一次方程組的解.
解:①+②,得
把 代入①,得
∴
∴
學生活動:比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)
上面方程組的兩個方程中,因為 的系數(shù)互為相反數(shù),所以我們把兩個方程相加,就消去了 .觀察一下, 的系數(shù)有何特點?(相等)方程①和方程②經(jīng)過怎樣的變化可以消去 ?(相減)
學生活動:觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)
我們將原方程組的兩個方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡稱“加減法”.
提問:①比較上面解二元一次方程組的方法,是用代入法簡單,還是用加減法簡單?(加減法)
、谠谑裁礂l件下可以用加減法進行消元?(某一個未知數(shù)的系數(shù)相等或互為相反數(shù))
、凼裁礂l件下用加法、什么條件下用減法?(某個未知數(shù)的系數(shù)互為相反數(shù)時用加法,系數(shù)相等時用減法)
【教法說明】這幾個問題,可使學生明確使用加減法的條件,體會在某些條件下使用加減法的優(yōu)越性.
例1 解方程組
哪個未知數(shù)的系數(shù)有特點?( 的系數(shù)相等)把這兩個方程怎樣變化可以消去 ?(相減)
學生活動:回答問題后,獨立完成例1,一個學生板演.
解:①-②,得
∴
把 代入②,得
∴
∴
∴
。1)檢驗一下,所得結(jié)果是否正確?
。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計算比較簡單?(①-②簡單)
。3)把 代入①, 的值是多少?( ),是代入①計算簡單還是代入②計算簡單?(代入系數(shù)較簡單的方程)
練習:P23 l.(l)(2)(3),分組練習,并把學生的解題過程在投影儀上顯示.
小結(jié):的條件是某個未知數(shù)的系數(shù)絕對值相等.
例2 解方程組
(1)上面的方程組是否符合用加減法消元的條件?(不符合)
。2)如何轉(zhuǎn)化可使某個未知數(shù)系數(shù)的絕對值相等?(①×2或②×3)
歸納:如果兩個方程中,未知數(shù)系數(shù)的絕對值都不相等,可以在方程兩邊部乘以同一個適當?shù)臄?shù),使兩個方程中有一個未知數(shù)的系數(shù)絕對值相等,然后再加減消元.
學生活動:獨立解題,并把一名學生解題過程在投影儀上顯示.
學生活動:總結(jié)的步驟.
、僮冃危鼓硞未知數(shù)的系數(shù)絕對值相等.
、诩訙p消元.
、劢庖辉淮畏匠.
、艽氲昧硪粋未知數(shù)的值,從而得方程組的解.
3.嘗試反饋,鞏固知識
練習:P23 1.(4)(5).
【教法說明】通過練習,使學生熟練地并能在練習中摸索運算技巧,培養(yǎng)能力.
4.變式訓(xùn)練,培養(yǎng)能力
。1)選擇:二元一次方程組 的解是( )
A. B. C. D.
。2)已知 ,求 、 的值.
學生活動:第(1)題口答,第(2)題在練習本上完成.
【教法說明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗的方法解,這道題能訓(xùn)練學生思維的靈活性;第(2)題通過分析,學生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學生分析問題,解決問題的綜合能力.
。ㄋ模┛偨Y(jié)、擴展
1.的思想:
2.的條件:某一未知數(shù)系數(shù)絕對值相等.
3.的步驟:
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P24 1.
。ǘ┻x做題:P25 B組1.
。ㄈ╊A(yù)習:下節(jié)課內(nèi)容.
參考答案
。ㄒ唬1) (2) (3) (4)
(二)1.(1)與(4) (2)與(3)
10.3 解二元一次方程組 篇7
教學建議
一、重點、難點分析
本節(jié)的教學重點是使學生學會用代入法.教學難點在于靈活運用代入法,這要通過一定數(shù)量的練習來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
二、知識結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.掌握的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
。ǘ┠芰τ(xùn)練點
1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學生的運算技巧,養(yǎng)成檢驗的習慣.
。ㄈ┑掠凉B透點
消元,化未知為已知的數(shù)學思想.
(四)美育滲透點
通過本節(jié)課的學習,滲透化歸的數(shù)學美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:引導(dǎo)發(fā)現(xiàn)法、練習法,嘗試指導(dǎo)法.
2.學生學法:在前面已經(jīng)學過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程中始終應(yīng)抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
(-)重點
使學生會.
。ǘ╇y點
靈活運用代入法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
(四)解決辦法
一方面復(fù)習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數(shù)較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學具準備
電腦或投影儀、自制膠片.
六、師生互動活動設(shè)計
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學步驟
(-)明確目標
本節(jié)課我們將學習用代入法求二元一次方程組的解.
。ǘ┱w感知
從復(fù)習用一個未知量表達另一個未知量的方法,從而導(dǎo)入 運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
。ㄈ教學步驟
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
。2)選擇題:
二元一次方程組 的解是
A. B. C. D.
【教法說明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習了上節(jié)課的重點,又成為導(dǎo)入 新課的材料.
通過上節(jié)課的學習,我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學習.
這樣導(dǎo)入 ,可以激發(fā)學生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.
設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得
設(shè)買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
【教法說明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說的基本思路嗎?
學生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
。1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
。3)求出 后代入哪個方程中求 比較簡單?(①)
學生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結(jié)果是否正確?
學生活動:口答檢驗.
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
【教法說明】給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學生活動:嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
(1)變形( )
。2)代入消元( )
。3)解一元一次方程得( )
(4)把 代入 求解
練習:P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
①由 可以得到用 表示 .
、谠 中,當 時, ;當 時, ,則 ; .
、圻x擇:若 是方程組 的解,則( )
A. B. C. D.
。ㄋ模┛偨Y(jié)、擴展
1.解二元一次方程組的思想: .
2.的步驟.
3.的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學習,我們要熟練運,并能檢驗結(jié)果是否正確.
八、布置作業(yè)
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
。ǘ┻x做題:P15 B組1.
參考答案
。ㄒ唬1.(2) (4)
2.(1) (2) (3) (4)
(二) ,
10.3 解二元一次方程組 篇8
教學建議
1.教材分析
(1)知識結(jié)構(gòu)
。2)重點、難點分析
重點:本小節(jié)的重點是使學生學會.這也是一種全新的知識,與在一元一次方程兩邊都加上、減去同一個數(shù)或同一個整式,或者都乘以、除以同一個非零數(shù)的情況是不一樣的,但運用這項知識(這里也表現(xiàn)為一種方法),有時可以簡捷地求出二元一次方程組的解,因此學生同樣會表現(xiàn)出一種極大的興趣.必須充分利用學生學會這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學生學會,并能靈活運用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學中必須引起足夠重視.
難點:靈活運用加減法的技巧,以便將方程變形為比較簡單和計算比較簡便,這也要通過一定數(shù)量的練習來解決.
2.教法建議
(1)本節(jié)是通過一個引例,介紹了加減法解方程組的基本思想和解題過程.教學時,要引導(dǎo)學生觀察這個方程組中未知數(shù)系數(shù)的特點.通過觀察讓學生說出,在兩個方程中y的系數(shù)互為相反數(shù)或在兩個方程中x的系數(shù)相等,讓學生自己動腦想一想,怎么消元比較簡便,然后引出加減消元法.
。2)講完加減法后,課本通過三個例題加以鞏固,這三個例題是由淺入深的,講解時也要先讓學生觀察每個方程組未知數(shù)系數(shù)的特點,然后讓學生說出每個方程組的解法,例題1老師自己板書,剩下的兩個例題讓學生上黑板板書,然后老師點評.
(3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實質(zhì)都是消元,即通過消去一個未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說:
這時學生對解題方法比較熟悉,但還沒有上升到理論的高度,這時教師應(yīng)及時點撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問題、解決問題的思想方法.
教學設(shè)計示例
。ǖ谝徽n時)
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.使學生掌握的步驟.
2.能運.
(二)能力訓(xùn)練點
1.培養(yǎng)學生分析問題、解決問題的能力.
2.訓(xùn)練學生的運算技巧.
。ㄈ┑掠凉B透點
消元,化未知為已知的轉(zhuǎn)化思想.
。ㄋ模┟烙凉B透點
滲透化歸的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:談話法、討論法.
2.學生學法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對值相等的值后即可利用加減法進行消元,同時在運算中注意歸納解題的技巧和解題的方法.
三、重點、難點、疑點及解決辦法
。ǎ┲攸c
使學生學會.
。ǘ╇y點
靈活運用加減消元法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
。ㄋ模┙鉀Q辦法
只要將相同未知量前的系數(shù)化為絕對值相等的值即可利用加減法進行消元.
四、課時安排
一課時.
五、教具學具準備
投影儀、膠片.
六、師生互動活動設(shè)計
1.教師通過復(fù)習上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入 新課即加減法解二元一次方程組.
2.通過引例進一步讓學生探究是用代入法還是用加減法解方程組更簡單,讓學生進一步明確用加減法解題的優(yōu)越性.
3.通過反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗,進而上升到理論.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課通過復(fù)習代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.
(二)整體感知
加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對值相等的值,即可使用加減法消元.故在教學中應(yīng)反復(fù)教會學生觀察并抓住解題的特征及辦法從而方便解題.
(三)教學過程
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)用代入法解二元一次方程組的基本思想是什么?
(2)用代入法解下列方程組,并檢驗所得結(jié)果是否正確.
學生活動:口答第(1)題,在練習本上完成第(2)題,一個同學說出結(jié)果.
上面的方程組中,我們用代入法消去了一個未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對于二元一次方程組,是否存在其他方法,也可以消去一個未知數(shù),達到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學習的內(nèi)容.
【教法說明】由練習導(dǎo)入 新課,既復(fù)習了舊知識,又引出了新課題,教學過程 中還可以進行代入法和加減法的對比,訓(xùn)練學生根據(jù)題目的特點選取適當?shù)姆椒ń忸}.
2.探索新知,講授新課
第(2)題的兩個方程中,未知數(shù) 的系數(shù)有什么特點?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個一元一次方程,進而求得二元一次方程組的解.
解:①+②,得
把 代入①,得
∴
∴
學生活動:比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)
上面方程組的兩個方程中,因為 的系數(shù)互為相反數(shù),所以我們把兩個方程相加,就消去了 .觀察一下, 的系數(shù)有何特點?(相等)方程①和方程②經(jīng)過怎樣的變化可以消去 ?(相減)
學生活動:觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)
我們將原方程組的兩個方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡稱“加減法”.
提問:①比較上面解二元一次方程組的方法,是用代入法簡單,還是用加減法簡單?(加減法)
②在什么條件下可以用加減法進行消元?(某一個未知數(shù)的系數(shù)相等或互為相反數(shù))
③什么條件下用加法、什么條件下用減法?(某個未知數(shù)的系數(shù)互為相反數(shù)時用加法,系數(shù)相等時用減法)
【教法說明】這幾個問題,可使學生明確使用加減法的條件,體會在某些條件下使用加減法的優(yōu)越性.
例1 解方程組
哪個未知數(shù)的系數(shù)有特點?( 的系數(shù)相等)把這兩個方程怎樣變化可以消去 ?(相減)
學生活動:回答問題后,獨立完成例1,一個學生板演.
解:①-②,得
∴
把 代入②,得
∴
∴
∴
(1)檢驗一下,所得結(jié)果是否正確?
。2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計算比較簡單?(①-②簡單)
(3)把 代入①, 的值是多少?( ),是代入①計算簡單還是代入②計算簡單?(代入系數(shù)較簡單的方程)
練習:P23 l.(l)(2)(3),分組練習,并把學生的解題過程在投影儀上顯示.
小結(jié):的條件是某個未知數(shù)的系數(shù)絕對值相等.
例2 解方程組
。1)上面的方程組是否符合用加減法消元的條件?(不符合)
(2)如何轉(zhuǎn)化可使某個未知數(shù)系數(shù)的絕對值相等?(①×2或②×3)
歸納:如果兩個方程中,未知數(shù)系數(shù)的絕對值都不相等,可以在方程兩邊部乘以同一個適當?shù)臄?shù),使兩個方程中有一個未知數(shù)的系數(shù)絕對值相等,然后再加減消元.
學生活動:獨立解題,并把一名學生解題過程在投影儀上顯示.
學生活動:總結(jié)的步驟.
、僮冃,使某個未知數(shù)的系數(shù)絕對值相等.
、诩訙p消元.
③解一元一次方程.
④代入得另一個未知數(shù)的值,從而得方程組的解.
3.嘗試反饋,鞏固知識
練習:P23 1.(4)(5).
【教法說明】通過練習,使學生熟練地并能在練習中摸索運算技巧,培養(yǎng)能力.
4.變式訓(xùn)練,培養(yǎng)能力
。1)選擇:二元一次方程組 的解是( )
A. B. C. D.
。2)已知 ,求 、 的值.
學生活動:第(1)題口答,第(2)題在練習本上完成.
【教法說明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗的方法解,這道題能訓(xùn)練學生思維的靈活性;第(2)題通過分析,學生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學生分析問題,解決問題的綜合能力.
。ㄋ模┛偨Y(jié)、擴展
1.的思想:
2.的條件:某一未知數(shù)系數(shù)絕對值相等.
3.的步驟:
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P24 1.
。ǘ┻x做題:P25 B組1.
(三)預(yù)習:下節(jié)課內(nèi)容.
參考答案
。ㄒ唬1) (2) (3) (4)
(二)1.(1)與(4) (2)與(3)
10.3 解二元一次方程組 篇9
各位、老師你們好!今天我要講的課題是人教版七年級(下)第八章第三節(jié)《實際問題與二元一次方程》的第一課時。首先,我對本節(jié)教材進行一些分析:
一、教材分析:
1、教材所處的地位和作用:
本節(jié)內(nèi)容在全書及章節(jié)的地位是:《實際問題與二元一次方程》是數(shù)學教材七年級(下)第八章第三節(jié)內(nèi)容。在學生已學習了解二元一次方程組的一般步驟的基礎(chǔ)上,進一步以“探究”的形式討論如何用二元一次方程組解決實際問題。以方程組為工具分析問題、解決問題(即建立方程模型)是全章的重點,同時也是難點。本節(jié)內(nèi)容一方面通過更加貼近實際生活的問題,進一步突出方程這種數(shù)學模型的應(yīng)用具有廣泛性和有效性;另一方面使學生能在更加貼近實際生活的問題情境中運用所學數(shù)學知識,使分析問題和解決問題的能力、創(chuàng)新和實踐意識在更高層次上得到提高。可以說本節(jié)是二元一次方程組應(yīng)用的延伸與拓廣。
2、學情分析:
七年級學生剛剛跨入少年期,理性思維的發(fā)展還很有限,他們在身體發(fā)育、知識經(jīng)驗、心理品質(zhì)方面,依然保留著小學生的天真活潑、對新生事物很感興趣、求知欲望強、具有強烈的好奇心與求知欲,形象直觀思維已比較成熟,但抽象思維能力還比較薄弱。于是我根據(jù)學生和初一上下冊教材銜接的特點設(shè)計了這節(jié)課。
二、教學方法與教學手段:
。1)教法分析:
基于本節(jié)課內(nèi)容的特點和七年級學生的心理特征,在教學中應(yīng)注意鼓勵學生積極探究,當學生在探究過程中遇到困難時,教師應(yīng)啟發(fā)誘導(dǎo),設(shè)計必要的鋪墊,不要代替他們思考,不要過早給出答案。鼓勵探究多種不同的分析問題和解決問題的方法,使探究過程活躍起來,在這樣的氛圍中可以更好地激發(fā)學生積極思維,得到更大收獲。
。2)學法分析:
教學過程是師生互相交流的過程,教師起引導(dǎo)作用,學生在教師的啟發(fā)下充分發(fā)揮主體性作用。七年級的學生,從認知的特點來看,學生愛問好動、求知欲強,想象力豐富,對實際問題有著濃厚的興趣,他們希望得到充分的展示和表現(xiàn),因此,在學習上,應(yīng)充分發(fā)揮學生在教學中的主體能動作用,讓學生自己通過討論和交流得到答案,激發(fā)學習興趣,培養(yǎng)應(yīng)用意識和發(fā)散思維。
三、教學過程及設(shè)計
教學目標
1經(jīng)歷用方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界中含有多個未知數(shù)的問題的有效數(shù)學模型;
2能夠找出實際問題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;
3學會比較估算與精確計算以及檢驗方程組的解是否符合題意并正確作答;
4培養(yǎng)分析、解決問題的能力,體會二元一次方程組的應(yīng)用價值,感受數(shù)學文化。
教學難點確定解題策略,比較估算與精確計算。
知識重點以方程組為工具分析,解決含有多個未知數(shù)的實際問題。
板書設(shè)計
8.3再探實際問題與二元一次方程
。1)實際問題設(shè)未知數(shù)列方程組數(shù)學問題(二元一次方程組)
教學過程(師生活動)
設(shè)計理念估時創(chuàng)設(shè)情境前面我們結(jié)合實際問題,討論了用方程組表示問題中的條件以及如何解方程組.本節(jié)我們繼續(xù)探究如何用方程組解決實際問題.
(出示問題)養(yǎng)牛場原有30只母牛和15只小牛,一天約需用飼料675 kg;一周后又購進12只母牛和5只小牛,這時一天約需用飼料940 kg。飼養(yǎng)員李大叔估計平均每只母牛1天約需用飼料18~20 kg,每只小牛1天約需用飼料7~8 kg。你能否通過計算檢驗他的估計?
開門見山,直接提出本節(jié)學習目標,強化本章的中心問題.以學生身邊的實際問題展開討論,突出數(shù)學與現(xiàn)實的聯(lián)系.探索分析解決問題學生思考、討論.判斷李大叔的估計是否正確的方法有兩種:
一、先假設(shè)李大叔的估計正確,再根據(jù)問題中給定的數(shù)量關(guān)系來檢驗.
二、根據(jù)問題中給定的數(shù)量關(guān)系求出平均每只母牛和每只小牛1天各約需用飼料量,再來判斷李大叔的估計是否正確.
學生在比較探究后發(fā)現(xiàn)用方法二較簡便.
設(shè)問1:如果選擇方法二,如何計算平均每只母牛和每只小牛1天各約需用飼料量?(有前面幾節(jié)的知識準備,學生可以回答)列方程組求解.主要思路:引導(dǎo)學生探尋解題思路,并對各種方法進行比較,方法一主要是要估算的運用,而方法二是方程的應(yīng)用。實際應(yīng)用
實際問題
數(shù)學問題二元一次方程組設(shè)未知數(shù)列方程組學生先獨立思考,然后師生共同討論解題過程.
解:設(shè)平均每只母牛和每只小牛1天各約需用飼料xkg和ykg。
找出相等關(guān)系列方程組解這個方程組,得這就是說,平均每只母牛和每只小牛1天各約需用飼料20kg和5kg。飼養(yǎng)員李大叔對母牛的食量估計正確,對小牛的食量估計不正確.
分步到位,滲透模型化的。規(guī)范解題步驟,培養(yǎng)學生有條理地思考、表達的習慣。
讓學生認識到檢驗的重要性,并學會正確作答。
拓廣探索比較分析
設(shè)問2:以上問題還能列出不同的方程組嗎?結(jié)果是否一致?
個別學生可能會列出如下方程組但結(jié)果一致
.比較分析,加深對方程組的認識。
課堂練習
1、《一千零一夜》中有這樣一段文字:有一群鴿子,其中一部分在樹上歡歌,另一部分在地上覓食.樹上的一只鴿子對地上覓食的鴿子說:“若從你們中飛上來一只,則樹下的鴿子就是整個鴿群的1/3;若從樹上飛下去一只,則樹上、樹下的鴿子就一樣多了.”你知道樹上、樹下各有多少只鴿子嗎?
2、悟空順風探妖蹤,千里只行四分鐘。歸時四分行六百,風速多少才稱雄?順風速度=悟空行走速度+風速逆風速度=悟空行走速度—風速
出示古典名題
一方面及時鞏固用方程組解決實際問題的過程,另一方面讓學生感受數(shù)學文化。
與作業(yè)提高
提問:通過這節(jié)課的學習,你知道用方程組解決實際問題有哪些步驟?
學生思考后回答、:
、僭O(shè)未知數(shù).②找相等關(guān)系.③列方程組.④檢驗并作答.
以問題的形式出現(xiàn),引導(dǎo)學生思考、交流,梳理所學知識,建立起符合自身認識特點的知識結(jié)構(gòu).訓(xùn)練口頭表達能力,養(yǎng)成及時歸納的良好學習習慣.
布置作業(yè)
1、必做題:教科書116頁習題8.3第1(1)3、5題。
2、選做題:教科書112頁習題.8.3第8題。教后反思
10.3 解二元一次方程組 篇10
一、說教材
首先談?wù)勎覍滩牡睦斫,《二元一次方程組》是人教版初中數(shù)學七年級下冊第八章第一節(jié)的內(nèi)容,本節(jié)課的內(nèi)容是二元一次方程組的概念以及二元一次方程組的解。在此之前學習了一元一次方程和解方程的步驟,為本節(jié)課打下了良好的基礎(chǔ)。學了本節(jié)課為后面的解二元一次方程的方法做下鋪墊。因此本節(jié)課有著承上啟下的作用。
二、說學情
接下來談?wù)剬W生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定的分析能力,與類比學習能力。而且在生活中也為本節(jié)課積累了很多經(jīng)驗。所以,學生對于二元一次方程組概念理解較為容易,找出方程組的解,相對來說有難度,需要教師多引導(dǎo)。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
。ㄒ唬┲R與技能
掌握二元一次方程與二元一次方程組的概念,并了解它們的解,能正確地找出二元一次方程組的解。
。ǘ┻^程與方法
通過類比學習、自主探究、合作交流的過程,提升類比學習的能力、培養(yǎng)探究的意識。
。ㄈ┣楦袘B(tài)度價值觀
感受數(shù)學與生活的密切聯(lián)系,培養(yǎng)學習數(shù)學的興趣。
四、說教學重難點
我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:二元一次方程與二元一次方程組的概念以及方程與方程組的解。教學難點是:二元一次方程組解的探究。
五、說教法和學法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導(dǎo)者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的年齡特征,本節(jié)課我采用講授法、練習法、小組合作等教學方法。
六、說教學過程
下面我將重點談?wù)勎覍虒W過程的設(shè)計。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),我采用情境導(dǎo)入:展示籃球聯(lián)賽圖片,給出評分標準。并提出問題:這個隊伍勝負場數(shù)分別是多少?
根據(jù)學生回答追問:用列方程解決問題,題中有幾個未知數(shù)呢?從而引出本節(jié)課的課題《二元一次方程組》
這樣設(shè)計的好處是:利用籃球聯(lián)賽的圖片導(dǎo)入,并講清楚評分規(guī)則,不僅可以吸引學生探索的興趣,還可以培養(yǎng)學生的數(shù)學應(yīng)用意識。
(二)新知探索
接下來是教學中最重要的新知探索環(huán)節(jié),主要通過三個活動展開學習。
活動一:學生嘗試列方程解決問題,看看在列方程過程中遇到了什么困難?同桌之間互相交流。
學生分析題意,發(fā)現(xiàn)有未知數(shù),可以使用列方程的方法解決問題。當讓學生自己動手練習時,他們會發(fā)現(xiàn),勝負的場數(shù)都是未知的。
此時教師可以引導(dǎo)學生發(fā)現(xiàn)和思考:要求的是兩個未知數(shù),能不能根據(jù)題意直接設(shè)兩個未知數(shù),使列方程變得容易呢?學生在這樣的提示下會有一定的想法,但對于列出二元一次方程組來說還是比較困難的。
教師板書表格示意圖,引導(dǎo)學生通過題意,發(fā)現(xiàn)題干中包含的必須同時滿足的條件,得到兩組關(guān)系式并設(shè)出未知數(shù)完成表格。
活動二:學生觀察兩個方程特點,與一元一次方程有什么不同?并試著下定義。
在這里學生通過類比學習,能夠歸納出二元一次方程的概念:每個方程都含有兩個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1。了解了二元一次方程后,對于二元一次方程組的概念就可以很好的展開了,對于本題列了兩個二元一次方程解決問題,像這樣的方程組叫做二元一次方程組。
師生共同總結(jié)出二元一次方程與二元一次方程組的定義。
列出了二元一次方程組,要解決籃球聯(lián)賽的問題,就要求出方程組的解,接下來進行第三個活動。
活動三:完成表格,以二元一次方程組中的一個方程為例。小組合作,找出幾組整數(shù)解,并觀察哪一組解也符合另一個方程。
在這里解二元一次方程組,可以先將問題簡單化,先研究一個方程的解,找到幾組解后,再看哪一組解也符合第二個方程。也就是兩個方程的公共解。教師給出表格,小組在進行合作時,教師應(yīng)引導(dǎo)學生思考結(jié)合題意,兩個未知數(shù)應(yīng)取正整數(shù)。填完表格后,師生共同總結(jié)出二元一次方程解的定義。
教師繼續(xù)追問,哪一組的值也滿足第二個方程。師生共同總結(jié)出什么叫做二元一次方程組的解。
得到方程組的解,回歸情景得出實際問題的答案。
設(shè)計意圖:通過三個活動展開本節(jié)課,不僅符合新課改的理念:學生是學習的主體,教師是教學活動中的組織者、引導(dǎo)者、合作者,還能通過小組活動、類比學習等活動豐富課堂。
。ㄈ┱n堂練習
接下來是鞏固提高環(huán)節(jié)。
練習:對下面的問題,列出二元一次方程組,并根據(jù)問題的實際意義,找出問題的解。
加工某種產(chǎn)品需經(jīng)兩道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件,F(xiàn)有7位工人參加這兩道工序,應(yīng)怎樣安排人力,才能使每天第一、第二道工序所完成的件數(shù)相等?
設(shè)計這道題可以讓學生感受數(shù)學與生活的密切聯(lián)系,學以致用。教師可以及時掌握學生本節(jié)課的學習情況,給予補充糾正。
。ㄋ模┬〗Y(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導(dǎo)學生回顧:二元一次方程組的定義與二元一次方程組的解。
本節(jié)課的課后作業(yè)我設(shè)計為:
思考除了用列表找二元一次方程組的解,還有什么方法能找出解,能不能將它變成我們熟悉的一元一次方程求解。
設(shè)計意圖:本節(jié)課學生通過列表觀察得到了方程組的解,作業(yè)設(shè)計為讓學生思考解二元一次方程組的方法,并提示能不能把它變成熟悉的一元一次方程求解,為下節(jié)課的學習做下鋪墊。
10.3 解二元一次方程組 篇11
教學建議
1.教材分析
。1)知識結(jié)構(gòu)
。2)重點、難點分析
重點:本小節(jié)的重點是使學生學會.這也是一種全新的知識,與在一元一次方程兩邊都加上、減去同一個數(shù)或同一個整式,或者都乘以、除以同一個非零數(shù)的情況是不一樣的,但運用這項知識(這里也表現(xiàn)為一種方法),有時可以簡捷地求出二元一次方程組的解,因此學生同樣會表現(xiàn)出一種極大的興趣.必須充分利用學生學會這種方法的積極性.加減(消元)法是解二元一次方程組的基本方法之一,因此要讓學生學會,并能靈活運用.這種方法同樣是解三元一次方程組和某些二元二次方程組的基本方法,在教學中必須引起足夠重視.
難點:靈活運用加減法的技巧,以便將方程變形為比較簡單和計算比較簡便,這也要通過一定數(shù)量的練習來解決.
2.教法建議
。1)本節(jié)是通過一個引例,介紹了加減法解方程組的基本思想和解題過程.教學時,要引導(dǎo)學生觀察這個方程組中未知數(shù)系數(shù)的特點.通過觀察讓學生說出,在兩個方程中y的系數(shù)互為相反數(shù)或在兩個方程中x的系數(shù)相等,讓學生自己動腦想一想,怎么消元比較簡便,然后引出加減消元法.
。2)講完加減法后,課本通過三個例題加以鞏固,這三個例題是由淺入深的,講解時也要先讓學生觀察每個方程組未知數(shù)系數(shù)的特點,然后讓學生說出每個方程組的解法,例題1老師自己板書,剩下的兩個例題讓學生上黑板板書,然后老師點評.
。3)講解完本節(jié)后,教師應(yīng)引導(dǎo)學生比較代入法與加減法這兩種方法,這兩種方法雖有不同,但實質(zhì)都是消元,即通過消去一個未知數(shù),把“二元”轉(zhuǎn)化為“一元”.也就是說:
這時學生對解題方法比較熟悉,但還沒有上升到理論的高度,這時教師應(yīng)及時點撥、滲透化歸轉(zhuǎn)化的思想,并指出這是具有普遍意義的分析問題、解決問題的思想方法.
教學設(shè)計示例
。ǖ谝徽n時)
一、素質(zhì)教育目標
(一)知識教學點
1.使學生掌握的步驟.
2.能運.
。ǘ┠芰τ(xùn)練點
1.培養(yǎng)學生分析問題、解決問題的能力.
2.訓(xùn)練學生的運算技巧.
。ㄈ┑掠凉B透點
消元,化未知為已知的轉(zhuǎn)化思想.
。ㄋ模┟烙凉B透點
滲透化歸的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:談話法、討論法.
2.學生學法:觀察各未知量前面系數(shù)的特征,只要將相同未知量前的系數(shù)化為絕對值相等的值后即可利用加減法進行消元,同時在運算中注意歸納解題的技巧和解題的方法.
三、重點、難點、疑點及解決辦法
(-)重點
使學生學會.
。ǘ╇y點
靈活運用加減消元法的技巧.
。ㄈ┮牲c
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
。ㄋ模┙鉀Q辦法
只要將相同未知量前的系數(shù)化為絕對值相等的值即可利用加減法進行消元.
四、課時安排
一課時.
五、教具學具準備
投影儀、膠片.
六、師生互動活動設(shè)計
1.教師通過復(fù)習上節(jié)課代入法解二元一次方程組的方法及其解題思想,引入除了消元法還有其他方法嗎?從而導(dǎo)入 新課即加減法解二元一次方程組.
2.通過引例進一步讓學生探究是用代入法還是用加減法解方程組更簡單,讓學生進一步明確用加減法解題的優(yōu)越性.
3.通過反復(fù)的訓(xùn)練、歸納、再訓(xùn)練、再歸納,從而積累用加減法解方程組的經(jīng)驗,進而上升到理論.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課通過復(fù)習代入法從而引入另一種消元的辦法,即加減法解二元一次方程組.
。ǘ┱w感知
加減法解二元一次方程組的關(guān)鍵在于將相同字母的系數(shù)化為絕對值相等的值,即可使用加減法消元.故在教學中應(yīng)反復(fù)教會學生觀察并抓住解題的特征及辦法從而方便解題.
(三)教學過程
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)用代入法解二元一次方程組的基本思想是什么?
(2)用代入法解下列方程組,并檢驗所得結(jié)果是否正確.
學生活動:口答第(1)題,在練習本上完成第(2)題,一個同學說出結(jié)果.
上面的方程組中,我們用代入法消去了一個未知數(shù),將“二元”轉(zhuǎn)化為“一元”,從而得到了方程組的解.對于二元一次方程組,是否存在其他方法,也可以消去一個未知數(shù),達到化“二元”為“一元”的目的呢?這就是我們這節(jié)課將要學習的內(nèi)容.
【教法說明】由練習導(dǎo)入 新課,既復(fù)習了舊知識,又引出了新課題,教學過程中還可以進行代入法和加減法的對比,訓(xùn)練學生根據(jù)題目的特點選取適當?shù)姆椒ń忸}.
2.探索新知,講授新課
第(2)題的兩個方程中,未知數(shù) 的系數(shù)有什么特點?(互為相反數(shù))根據(jù)等式的性質(zhì),如果把這兩個方程的左邊與左邊相加,右邊與右邊相加,就可以消掉 ,得到一個一元一次方程,進而求得二元一次方程組的解.
解:①+②,得
把 代入①,得
∴
∴
學生活動:比較用這種方法得到的 、 值是否與用代入法得到的相同.(相同)
上面方程組的兩個方程中,因為 的系數(shù)互為相反數(shù),所以我們把兩個方程相加,就消去了 .觀察一下, 的系數(shù)有何特點?(相等)方程①和方程②經(jīng)過怎樣的變化可以消去 ?(相減)
學生活動:觀察、思考,嘗試用①-②消元,解方程組,比較結(jié)果是否與用①+②得到的結(jié)果相同.(相同)
我們將原方程組的兩個方程相加或相減,把“二元”化成了“一元”,從而得到了方程組的解.像這種解二元一次方程組的方法叫加減消元法,簡稱“加減法”.
提問:①比較上面解二元一次方程組的方法,是用代入法簡單,還是用加減法簡單?(加減法)
、谠谑裁礂l件下可以用加減法進行消元?(某一個未知數(shù)的系數(shù)相等或互為相反數(shù))
、凼裁礂l件下用加法、什么條件下用減法?(某個未知數(shù)的系數(shù)互為相反數(shù)時用加法,系數(shù)相等時用減法)
【教法說明】這幾個問題,可使學生明確使用加減法的條件,體會在某些條件下使用加減法的優(yōu)越性.
例1 解方程組
哪個未知數(shù)的系數(shù)有特點?( 的系數(shù)相等)把這兩個方程怎樣變化可以消去 ?(相減)
學生活動:回答問題后,獨立完成例1,一個學生板演.
解:①-②,得
∴
把 代入②,得
∴
∴
∴
。1)檢驗一下,所得結(jié)果是否正確?
(2)用②-①可以消掉 嗎?(可以)是用①-②,還是用②-①計算比較簡單?(①-②簡單)
。3)把 代入①, 的值是多少?( ),是代入①計算簡單還是代入②計算簡單?(代入系數(shù)較簡單的方程)
練習:P23 l.(l)(2)(3),分組練習,并把學生的解題過程在投影儀上顯示.
小結(jié):的條件是某個未知數(shù)的系數(shù)絕對值相等.
例2 解方程組
(1)上面的方程組是否符合用加減法消元的條件?(不符合)
。2)如何轉(zhuǎn)化可使某個未知數(shù)系數(shù)的絕對值相等?(①×2或②×3)
歸納:如果兩個方程中,未知數(shù)系數(shù)的絕對值都不相等,可以在方程兩邊部乘以同一個適當?shù)臄?shù),使兩個方程中有一個未知數(shù)的系數(shù)絕對值相等,然后再加減消元.
學生活動:獨立解題,并把一名學生解題過程在投影儀上顯示.
學生活動:總結(jié)的步驟.
、僮冃危鼓硞未知數(shù)的系數(shù)絕對值相等.
②加減消元.
、劢庖辉淮畏匠.
、艽氲昧硪粋未知數(shù)的值,從而得方程組的解.
3.嘗試反饋,鞏固知識
練習:P23 1.(4)(5).
【教法說明】通過練習,使學生熟練地并能在練習中摸索運算技巧,培養(yǎng)能力.
4.變式訓(xùn)練,培養(yǎng)能力
(1)選擇:二元一次方程組 的解是( )
A. B. C. D.
。2)已知 ,求 、 的值.
學生活動:第(1)題口答,第(2)題在練習本上完成.
【教法說明】第(1)題可以用解方程組的方法得解,也可以把四組值分別代入原方程組中,利用檢驗的方法解,這道題能訓(xùn)練學生思維的靈活性;第(2)題通過分析,學生可得方程組 從而求得 、 的值.此題可以培養(yǎng)學生分析問題,解決問題的綜合能力.
(四)總結(jié)、擴展
1.的思想:
2.的條件:某一未知數(shù)系數(shù)絕對值相等.
3.的步驟:
八、布置作業(yè)
。ㄒ唬┍刈鲱}:P24 1.
。ǘ┻x做題:P25 B組1.
(三)預(yù)習:下節(jié)課內(nèi)容.
參考答案
(一)(1) (2) (3) (4)
(二)1.(1)與(4) (2)與(3)
10.3 解二元一次方程組 篇12
一、說教材分析
1、教材的地位和作用
二元一次方程組是初中數(shù)學的重點內(nèi)容之一,是一元一次方程知識的延續(xù)和提高,又是學習其他數(shù)學知識的基礎(chǔ)。本節(jié)課是在學生學習了一元一次方程的基礎(chǔ)上,繼續(xù)學習另一種方程及方程組,它是學生系統(tǒng)學習二元一次方程組知識的前提和基礎(chǔ)。通過類比,讓學生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數(shù)等知識的學習打下基礎(chǔ)。
2、教學目標
知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的`解。
能力目標:會判斷一組未知數(shù)的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。
情感目標:使學生通過交流、合作、討論獲取成功體驗,激發(fā)學生學習知識的興趣,增強學生的自信心。
3、重點、難點
重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。
難點:在實際生活中二元一次方程組的應(yīng)用。
二、教法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學生留出足夠的思考時間和空間,讓學生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現(xiàn)教學素材,從而更好發(fā)激發(fā)學生的學習興趣,增大教學容量,提高教學效率。
三、學法
“問題”是數(shù)學教學的心臟,活動是數(shù)學教學中的靈魂。所以我在學生思維最近發(fā)展區(qū)內(nèi)設(shè)置并提出一系列問題,通過數(shù)學活動,引導(dǎo)學生:自主性學習,合作式學習,探究式學習等,激發(fā)學生的學習興趣,提高學生的數(shù)學思維和參與度,力求學生在“雙基”數(shù)學能力和理性精神方面得到一定發(fā)展。
四、教學過程
新課標指出,數(shù)學教學過程是教師引導(dǎo)學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學,本節(jié)課我主要安排以下教學環(huán)節(jié):
。1)復(fù)習舊知,溫故知新
籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝一場得2分。負一場得1分,某隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負場數(shù)分別是多少?
設(shè)計意圖:構(gòu)建注意主張教學應(yīng)從學生已有的知識體系出發(fā),方程是本節(jié)課深入研究二元一次方程組的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學生順利地進入學習情境。
。2)創(chuàng)設(shè)情境,提出問題
這個問題中包含了哪些必須同時滿足的條件?設(shè)勝的場數(shù)是x,負的場數(shù)是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數(shù)+負的場數(shù)=總場數(shù),
勝場積分+負場積分=總積分。
這兩個條件可以用方程
x+y=22
2x+y=40
表示:
上面兩個方程中,每個方程都含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程。
把兩個方程合在一起,寫成
x+y=22
2x+y=40
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學生的認知沖突,使學生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學生的學習興趣和求知欲望,通過情境創(chuàng)設(shè),學生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學習動力,此時我把學生帶入下一環(huán)節(jié)。
。3)發(fā)現(xiàn)問題,探求新知
滿足方程①,且符合問題的實際意義的x、y的值有哪些?把它們填入表中。
10.3 解二元一次方程組 篇13
教學建議
一、重點、難點分析
本節(jié)的教學重點是使學生學會用代入法.教學難點 在于靈活運用代入法,這要通過一定數(shù)量的練習來解決;另一個難點在于用代入法求出一個未知數(shù)的值后,不知道應(yīng)把它代入哪一個方程求另一個未知數(shù)的值比較簡便.
解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.
二、知識結(jié)構(gòu)
三、教法建議
1.關(guān)于檢驗方程組的解的問題.教材指出:“檢驗時,需將所求得的一對未知數(shù)的值分別代入原方程組里的每一個方程中,看看方程的左、右兩邊是不是相等.”教學時要強調(diào)“原方程組”和“每一個”這兩點.檢驗的作用,一是使學生進一步明確代入法是求方程組的解的一種基本方法,通過代入消元的確可以求得方程組的解二是進一步鞏固二元一次方程組的解的概念,強調(diào)
這一對數(shù)值才是原方程組的解,并且它們必須使兩個方程左、右兩邊的值都相等;三是因為我們沒有用方程組的同解原理而是用代換(等式的傳遞)來解方程組的,所以有必要檢驗求出來的這一對數(shù)值是不是原方程組的解;四是為了杜絕變形和計算時發(fā)生的錯誤.檢驗可以口算或在草稿紙上演算,教科書中沒有寫出.
2.教學時,應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過等量代換的方法,消去一個未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學生就能有較強的目的性.
3.教師講解例題時要注意由簡到繁,由易到難,逐步加深.隨著例題由簡到繁,由易到難,要特別強調(diào)解方程組時應(yīng)努力使變形后的方程比較簡單和代入后化簡比較容易.這樣不僅可以求解迅速,而且可以減少錯誤.
一、素質(zhì)教育目標
(一)知識教學點
1.掌握的步驟.
2.熟練運用代入法解簡單的二元一次方程組.
。ǘ┠芰τ(xùn)練點
1.培養(yǎng)學生的分析能力,能迅速在所給的二元一次方程組中,選擇一個系數(shù)較簡單的方程進行變形.
2.訓(xùn)練學生的運算技巧,養(yǎng)成檢驗的習慣.
。ㄈ┑掠凉B透點
消元,化未知為已知的數(shù)學思想.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學習,滲透化歸的數(shù)學美,以及方程組的解所體現(xiàn)出來的奇異的數(shù)學美.
二、學法引導(dǎo)
1.教學方法:引導(dǎo)發(fā)現(xiàn)法、練習法,嘗試指導(dǎo)法.
2.學生學法:在前面已經(jīng)學過一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過程中始終應(yīng)抓住消元的思想方法.
三、重點、難點、疑點及解決辦法
。ǎ┲攸c
使學生會.
(二)難點
靈活運用代入法的技巧.
(三)疑點
如何“消元”,把“二元”轉(zhuǎn)化為“一元”.
。ㄋ模┙鉀Q辦法
一方面復(fù)習用一個未知量表示另一個未知量的方法,另一方面學會選擇用一個系數(shù)較簡單的方程進行變形:
四、課時安排
一課時.
五、教具學具準備
電腦或投影儀、自制膠片.
六、師生互動活動設(shè)計
1.教師設(shè)問怎樣用一個未知量表示另一個未知量,并比較哪種表示形式更簡單,如 等.
2.通過課本中香蕉、蘋果的應(yīng)用問題,引導(dǎo)學生列出一元一次方程或二元一次方程組,并通過比較、嘗試,探索出化二元為一元的解方程組的方法.
3.再通過比較、嘗試,探索出選一個系數(shù)較簡單的方程變形,通過代入法求方程組解的辦法更簡便,并尋找出求解的規(guī)律.
七、教學步驟
。ǎ┟鞔_目標
本節(jié)課我們將學習用代入法求二元一次方程組的解.
(二)整體感知
從復(fù)習用一個未知量表達另一個未知量的方法,從而導(dǎo)入 運用代入法化二元為一元方程的求解過程,即利用代入消元法求二元一次方程組的解的辦法.
。ㄈ┙虒W步驟
1.創(chuàng)設(shè)情境,復(fù)習導(dǎo)入
。1)已知方程 ,先用含 的代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡單.
(2)選擇題:
二元一次方程組 的解是
A. B. C. D.
【教法說明】 第(1)題為打下基礎(chǔ);第(2)題既復(fù)習了上節(jié)課的重點,又成為導(dǎo)入 新課的材料.
通過上節(jié)課的學習,我們會檢驗一對數(shù)值是否為某個二元一次方程組的解.那么,已知一個二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來學習.
這樣導(dǎo)入 ,可以激發(fā)學生的求知欲.
2.探索新知,講授新課
香蕉的售價為5元/千克,蘋果的售價為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?
學生活動:分別列出一元一次方程和二元一次方程組,兩個學生板演.
設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得
設(shè)買了香蕉 千克,買了蘋果 千克,得
上面的一元一次方程我們會解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
【教法說明】解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識的發(fā)生過程,這對于學生知識的形成十分重要.
上面解二元一次方程組的方法,就是代入消元法.你能簡單說說的基本思路嗎?
學生活動:小組討論,選代表發(fā)言,教師進行指導(dǎo).糾正后歸納:設(shè)法消去一個未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.
例1 解方程組
(1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)
。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .
。3)求出 后代入哪個方程中求 比較簡單?(①)
學生活動:依次回答問題后,教師板書
解:把①代入②,得
∴
把 代入①,得
∴
如何檢驗得到的結(jié)果是否正確?
學生活動:口答檢驗.
教師:要把所得結(jié)果分別代入原方程組的每一個方程中.
【教法說明】給出例1后提出的三個問題,恰好是學生的思維過程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過檢驗,可使學生養(yǎng)成嚴謹認真的學習習慣.
例2 解方程組
要把某個方程化成如例1中方程①的形式后,代入另一個方程中才能消元.方程②中 的系數(shù)是1,比較簡單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.
學生活動:嘗試完成例2.
教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學生的問題,把書寫過程規(guī)范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
檢驗后,師生共同討論:
。1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)
。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運算簡便)
學生活動:根據(jù)例1、例2的解題過程,嘗試總結(jié)的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁,用幾個字概括每個步驟.
教師板書:
。1)變形( )
(2)代入消元( )
。3)解一元一次方程得( )
。4)把 代入 求解
練習:P13 1.(1)(2);P14 2.(1)(2).
3.變式訓(xùn)練,培養(yǎng)能力
、儆 可以得到用 表示 .
②在 中,當 時, ;當 時, ,則 ; .
、圻x擇:若 是方程組 的解,則( )
A. B. C. D.
。ㄋ模┛偨Y(jié)、擴展
1.解二元一次方程組的思想: .
2.的步驟.
3.的技巧:①變形的技巧②代入的技巧.
通過這節(jié)課的學習,我們要熟練運,并能檢驗結(jié)果是否正確.
八、布置作業(yè)
(一)必做題:P15 1.(2)(4),2.(1)(2)(3)(4).
。ǘ┻x做題:P15 B組1.
參考答案
(一)1.(2) (4)
2.(1) (2) (3) (4)
。ǘ ,
10.3 解二元一次方程組 篇14
今天,我說課的內(nèi)容是蘇科版八年級上冊中的《二元一次方程與一次函數(shù)》的第一課時。我打算主要從“說教材,說教法,說學法,說過程”這四大塊內(nèi)容來談?wù)勎业脑O(shè)計。
一、說教材
。ㄒ唬┙滩姆治觯ㄋ幍牡匚患白饔茫
“二元一次方程與一次函數(shù)”是在前面學習了“一次函數(shù)”與“二元一次方程”的基礎(chǔ)上來學習的。是對前面“一次函數(shù)”和“二元一次方程”的一次提高和升華,也為以后進一步學習“用二次函數(shù)圖象求一元二次方程的近似解”作鋪墊。其中用到的“數(shù)形結(jié)合”是我們中學學習數(shù)學重要之一,也是我們數(shù)學學習中經(jīng)常用來解決一些實際問題的重要手段。
。ǘ┙虒W目標:
。1)使學生初步理解二元一次方程與一次函數(shù)的關(guān)系。
(2)能利用二元一次方程組確定一次函數(shù)的表達式。
(3)能根據(jù)一次函數(shù)圖象求出二元一次方程組的近似解。
。4)進一步培養(yǎng)學生畫圖,識圖能力;培養(yǎng)學生初步的數(shù)形結(jié)合意識和能力。
。ㄈ┙虒W重點、難點;
重點:
1、二元一次方程和一次函數(shù)的關(guān)系。
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
難點:
1、二元一次方程和一次函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力。
2、二元一次方程的解與一次函數(shù)圖象交點坐標之間的對應(yīng)關(guān)系。
二、說教法
本節(jié)課我通過與學生一起探討問題,解決問題,以達師生互動的效果。引導(dǎo)學生從已有的知識和生活經(jīng)驗出發(fā),提出問題,讓學生自己動手操作,發(fā)現(xiàn)問題,解決問題,從而歸納出解決問題的一般方法。
針對本節(jié)課的重點,難點“二元一次方程(組的解)與一次函數(shù)圖象(的交點坐標)之間的對應(yīng)關(guān)系”,由于其理解難度大,因此我準備采用“創(chuàng)設(shè)情境”用問題串的形式引導(dǎo)學生動手操作、自主探索來研究發(fā)現(xiàn)“二元一次方程(組的解)與一次函數(shù)圖象(的交點坐標)”兩者之間的內(nèi)在聯(lián)系。對于書上出現(xiàn)的例1:準備先通過學生自己思考,教師引導(dǎo)評講最終解決問題;對于書上的練習,主要通過學生自己練習,以達到“鞏固知識”的目的。
三、說學法
在本節(jié)課開頭,我以學生原有的知識作為基礎(chǔ),創(chuàng)設(shè)有助于學生探索思考的問題情境,引導(dǎo)學生用“探索————研究————發(fā)現(xiàn)”的方法,來獲得知識,掌握知識。不過在這個過程中,可能學生的自主探究能力比較差,因此在這方面我打算更多的引導(dǎo)以解決學生不足之處,發(fā)現(xiàn)問題,解決問題的能力得到了進一步的發(fā)展;同時也培養(yǎng)了學生積極思考,認真探索的良好學習習慣。
四、說過程
這節(jié)課我就首先從學生已學過的二元一次方程聯(lián)想到一次函數(shù)出發(fā)提出問題:二元一次方程、一次函數(shù)、直線的關(guān)系。接著通過對書上的問題串讓學生進行合作交流的探索和師生的共同探索得出:
、哦淮畏匠獭⒁淮魏瘮(shù)、直線(一次函數(shù)的圖象)的關(guān)系;
、坪瘮(shù)的對應(yīng)值、圖象上點的橫縱坐標、方程的解的關(guān)系;并由此產(chǎn)生兩種解二元一次方程的方法(圖解法和函數(shù)法);
、欠匠探M的解和兩直線交點的關(guān)系。進而會用圖象法解二元一次方程(組)。
五、反思困惑
由于本節(jié)課是”二元一次方程與一次函數(shù)”首次緊密結(jié)合,其中充分體現(xiàn)了數(shù)學學習中數(shù)形結(jié)合的,學生在理解上有一定難度。因此,如何更好的將本節(jié)課的數(shù)形結(jié)合灌輸?shù)綄W生中,特別是在講到二元一次方程與一次函數(shù)的聯(lián)系,在這方面?zhèn)湔n的時候感到比較吃力。希望各位老師給予批評與指正。在這節(jié)課的設(shè)計中,仍有許多不足之處,請多請教!