§7.2解二元一次方程組
一.教學(xué)目標(biāo)(一)教學(xué)知識點1.代入消元法解二元一次方程組.2.解二元一次方程組時的“消元”思想,“化未知為已知”的化歸思想.(二)能力訓(xùn)練要求1.會用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.(三)情感與價值觀要求1.在學(xué)生了解二元一次方程組的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問題為簡單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心.2.培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣.二.教學(xué)重點1.會用代入消元法解二元一次方程組.2.了解解二元一次方程組的“消元”思想,初步體現(xiàn)數(shù)學(xué)研究中“化未知為已知”的化歸思想.三.教學(xué)難點1.“消元”的思想.2.“化未知為已知”的化歸思想.四.教學(xué)方法啟發(fā)——自主探索相結(jié)合.教師引導(dǎo)學(xué)生回憶一元一次方程解決實際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.五.教具準(zhǔn)備投影片兩張:第一張:例題(記作§7.2 a);第二張:問題串(記作§7.2 b).六.教學(xué)過程ⅰ.提出疑問,引入新課[師生共憶]上節(jié)課我們討論過一個“希望工程”義演的問題;沒去觀看義演的成人有x個,兒童有y個,我們得到了方程組 成人和兒童到底去了多少人呢?[生]在上一節(jié)課的“做一做”中,我們通過檢驗 是不是方程x+y=8和方程5x+3y=34,得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個人和3個人.[師]但是,這個解是試出來的.我們知道二元一次方程的解有無數(shù)個.難道我們每個方程組的解都去這樣試?[生]太麻煩啦.[生]不可能.[師]這就需要我們學(xué)習(xí)二元一次方程組的解法.ⅱ.講授新課[師]在七年級第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過“希望工程”義演問題,當(dāng)時是如何解的呢?[生]解:設(shè)成人去了x個,兒童去了(8-x)個,根據(jù)題意,得:5x+3(8-x)=34解得x=5將x=5代入8-x=8-5=3答:成人去了5個,兒童去了3個.[師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?[生]列二元一次方程組設(shè)出有兩個未知數(shù)成人去了x個,兒童去了y個.列一元一次方程設(shè)成人去了x個,兒童去了(8-x)個.y應(yīng)該等于(8-x).而由二元一次方程組的一個方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.[生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個方程5x+3y=34相比較,把5x+3y=34中的“y”用“8-x”代替就轉(zhuǎn)化成了一元一次方程.[師]太好了.我們發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法——即將新知識轉(zhuǎn)化為舊知識便可.如何轉(zhuǎn)化呢?[生]上一節(jié)課我們就已知道方程組的兩個未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.“二元”化成“一元”.