“因數和倍數”教學設計與說明
課前思考:
1.概念揭示變“邏輯演繹”為“活動建構”。因數和倍數,傳統教材是按數學知識的邏輯系統(除法整除約數和倍數)來安排的,這種概念的揭示,從抽象到抽象,沒有學生親身經歷的過程,也無須學生借助原有經驗的自主建構,學生獲得的概念是刻板、冰冷的。如果能借助學生的操作和想象活動,喚起學生的“因倍意識”,自主建構起“因數和倍數”的意義,那么學生獲得的概念必然是生動的、有意義的。
2.解決問題變“關注結果”為“對話生成”。要找出一個數的幾個因數并不難,難就難在找出這個數的所有因數。這里有一個方法問題。是把方法簡單地告訴學生,迫切地尋求結果,還是給學生充分的探究時間,讓他們通過獨立思考、交流討論,從而發現問題、解決問題呢?很多成功的教學表明,在教學中為學生營造出一個“對話場”,在生生、師生多角度、多層面的對話中,能讓師生彼此分享經驗、溝通思考,生成新的看法。
3.教學宗旨變“關注知識”為”啟迪智慧”。“知識關乎事物,智慧關乎人生;知識是理念的外化,智慧是人生的反觀。”從知識課堂走向智慧課堂,為學生的智慧成長而教,應成為我們數學教學的傾心追求。怎樣通過對“因數和倍數”內涵的深度挖掘,在教給學生數學知識的同時,更教會他們數學思考的方法,讓他們在數學課堂上釋放潛能,開啟心智?這是我設計“因數和倍數”這堂課的宗旨所在。
教學目標:
1.通過“活動建構”,使學生領會因數和倍數的意義;通過獨立思考、交流談論,初步掌握求一個數所有因數的方法。
2.在解決問題的過程中,培養學生思維的有序性、條理性,增強學生的探究意識和求索精神。
3.通過教學,讓學生從中感受到數學思考的魅力,體驗到數學學習的樂趣。教學準備:
練習紙、學號卡等。
教學重、難點:
掌握求一個數的所有因數的方法,學會有序地進行思考。
教學流程:
一、意義建構
1.用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來?(請一位學生回答)
2.猜猜他可能是怎樣擺的?
(根據學生回答依次出現相應的兩種擺法,隨后隱去第二種)
3.還可以怎樣擺?同樣用一道乘法算式表示出來。
(再請一位學生回答)
4.他又可能是怎樣擺的?
(根據學生回答屏幕顯示另外兩種擺法,隨后隱去第二種)
5.還可以怎樣擺?
(請學生回答)
6.能想象出他的擺法嗎?
(根據學生回答屏幕顯示最后兩種擺法,隨后隱去第二種)
此時屏幕上出現三種擺法。在三種擺法右側分別出現三道乘法算式。
7.通過剛才的學習,我們發現,用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以4×3=12為例,4×3=12,從數學的角度看,我們可以說4是12的因數,3也是她的因數。反過來,我們還可以說,12是4的倍數,12也是3的倍數。這就是我們今天要研究的“因數和倍數”。
(板書課題:因數和倍數)
8.結合另外兩道乘法算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?
(請同座兩個學生相互說一說)
9.為了研究的方便,在研究因數和倍數時,我們所說的數專指不是零的自然數。