第二單元 因數(shù)和倍數(shù)(通用6篇)
第二單元 因數(shù)和倍數(shù) 篇1
一、單元教學(xué)計(jì)劃
單元名稱: 因數(shù)與倍數(shù)
單元教學(xué)目標(biāo):
1、因數(shù)和倍數(shù)、質(zhì)數(shù)和合數(shù)、奇數(shù)和偶數(shù)等概念,
2、2、3、5的倍數(shù)的特征;會(huì)求100以內(nèi)的兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)。
3、學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn): 因數(shù)與倍數(shù)”包括因數(shù)和倍數(shù)的意義,2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù)的含義
教學(xué)難點(diǎn):學(xué)生理解因數(shù)與倍數(shù)”包括因數(shù)和倍數(shù)的意義,并記憶一些概念,又要求能夠運(yùn)用這些概念進(jìn)行一定的推理、判斷。
教學(xué)內(nèi)容及課時(shí)分配:
教學(xué)時(shí)數(shù):6課時(shí)
第一課時(shí):因數(shù)和倍數(shù)
教學(xué)內(nèi)容:p12-p14
第二課時(shí): 練習(xí)課
教學(xué)內(nèi)容:練習(xí)二
第三課時(shí): 2、5的倍數(shù)的特征
教學(xué)內(nèi)容:p17、p18
第四課時(shí): 3的倍數(shù)的特征
教學(xué)內(nèi)容:p19-p22
第五課時(shí):質(zhì)數(shù)和合數(shù)
教學(xué)內(nèi)容:p23-p24
第六課時(shí): 練習(xí)課
教學(xué)內(nèi)容:p25-26練習(xí)四
教學(xué)準(zhǔn)備:教材課堂作業(yè)本同步練習(xí)數(shù)學(xué)薄
第一課時(shí) 因數(shù)和倍數(shù)
教學(xué)內(nèi)容:因數(shù)和倍數(shù)
教材簡析:例1是學(xué)一個(gè)數(shù)的因數(shù)的求法。教材直接提出問題“18可以由哪兩個(gè)數(shù)相乘得到?”引導(dǎo)學(xué)生利用因數(shù)的概念來求18的因數(shù)。在這里,每列出一個(gè)乘法算式,就可以求出18的一對因數(shù),只要學(xué)生有序地寫出兩個(gè)數(shù)的乘積是18的所有乘法算式,就可以把因數(shù)找全。 例2是教學(xué)一個(gè)數(shù)的倍數(shù)的求法。根據(jù)一個(gè)數(shù)的倍數(shù)的定義,可知該數(shù)和任意非零自然數(shù)之積都是該數(shù)的倍數(shù)。因此,2的倍數(shù)也就是2和任意非零自然數(shù)的乘積,學(xué)生在列乘法算式時(shí)就會(huì)發(fā)現(xiàn)這樣的算式是列不完的,因此,2的倍數(shù)的個(gè)數(shù)是無限的。接下來,也用集合圖表示出2的倍數(shù),為后面學(xué)習(xí)用交集表示兩個(gè)數(shù)的公倍數(shù)打下基礎(chǔ)。
教學(xué)目標(biāo):
1、學(xué)生掌握找一個(gè)數(shù)的因數(shù),倍數(shù)的方法;
2、學(xué)生能了解一個(gè)數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個(gè)數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)學(xué)生的觀察能力。
教學(xué)重點(diǎn):掌握找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)難點(diǎn):能熟練地找一個(gè)數(shù)的因數(shù)和倍數(shù)。
教學(xué)過程:
一、引入新課。
1、出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因?yàn)?6=12
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個(gè)算式來考考同桌?學(xué)生寫算式。
師:誰來出一個(gè)算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù)倍數(shù))
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個(gè)?
從12的因數(shù)可以看得出,一個(gè)數(shù)的因數(shù)還不止一個(gè),那我們一起找找看18的因數(shù)有哪些?
學(xué)生嘗試完成:匯報(bào)
(18的因數(shù)有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如118=18,29=18…)
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時(shí)候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報(bào)36的因數(shù)有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯(cuò)例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因?yàn)橹貜?fù)的因數(shù)只要寫一個(gè)就可以了,所以不需要寫兩個(gè)6)
仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個(gè)數(shù)的因數(shù),最小的一定是( ),而最大的一定是。
3、你還想找哪個(gè)數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個(gè)在自練本上寫一寫,然后匯報(bào)。
4、其實(shí)寫一個(gè)數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如 18的因數(shù)
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時(shí)候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報(bào):2、4、6、8、10、16、……
師:為什么找不完?
你是怎么找到這些倍數(shù)的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
匯報(bào) 3的倍數(shù)有:3,6,9,12
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數(shù)有:5,10,15,20,……
師:表示一個(gè)數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓可以用集合來表示
2的倍數(shù) 3的倍數(shù)5的倍數(shù)
師:我們知道一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,那么一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是怎么樣的呢?
(一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))
三、課堂小結(jié):我們一起來回憶一下,這節(jié)課我們重點(diǎn)研究了一個(gè)什么問題?你有什么收獲呢?
四、獨(dú)立作業(yè):作業(yè)本p4
板書設(shè)計(jì):
因數(shù)和倍數(shù)
12是2的倍數(shù),12也是6的倍數(shù)。
18的因數(shù)有哪幾個(gè)?
1,2,3,6,9,18
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會(huì)結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。
新課標(biāo)實(shí)施的過程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過程,在這個(gè)過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實(shí)踐和探索中不斷前進(jìn)。
第二單元 因數(shù)和倍數(shù) 篇2
課題:因數(shù)和倍數(shù)
教學(xué)目標(biāo):
1、學(xué)生掌握找一個(gè)數(shù)的因數(shù),倍數(shù)的方法;
2、學(xué)生能了解一個(gè)數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
3、能熟練地找一個(gè)數(shù)的因數(shù)和倍數(shù);
4、培養(yǎng)學(xué)生的觀察能力。
教學(xué)重點(diǎn):掌握找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)難點(diǎn):能熟練地找一個(gè)數(shù)的因數(shù)和倍數(shù)。
教學(xué)過程:
一、引入新課。
1、出示主題圖,讓學(xué)生各列一道乘法算式。
2、師:看你能不能讀懂下面的算式?
出示:因?yàn)?6=12
所以2是12的因數(shù),6也是12的因數(shù);
12是2的倍數(shù),12也是6的倍數(shù)。
3、師:你能不能用同樣的方法說說另一道算式?
(指名生說一說)
師:你有沒有明白因數(shù)和倍數(shù)的關(guān)系了?
那你還能找出12的其他因數(shù)嗎?
4、你能不能寫一個(gè)算式來考考同桌?學(xué)生寫算式。
師:誰來出一個(gè)算式考考全班同學(xué)?
5、師:今天我們就來學(xué)習(xí)因數(shù)和倍數(shù)。(出示課題:因數(shù) 倍數(shù))
齊讀p12的注意。
二、新授:
(一)找因數(shù):
1、出示例1:18的因數(shù)有哪幾個(gè)?
從12的因數(shù)可以看得出,一個(gè)數(shù)的因數(shù)還不止一個(gè),那我們一起找找看18的因數(shù)有哪些?
學(xué)生嘗試完成:匯報(bào)
(18的因數(shù)有: 1,2,3,6,9,18)
師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如118=18,29=18…)
師:18的因數(shù)中,最小的是幾?最大的是幾?我們在寫的時(shí)候一般都是從小到大排列的。
2、用這樣的方法,請你再找一找36的因數(shù)有那些?
匯報(bào)36的因數(shù)有: 1,2,3,4,6,9,12,18,36
師:你是怎么找的?
舉錯(cuò)例(1,2,3,4,6,6,9,12,18,36)
師:這樣寫可以嗎?為什么?(不可以,因?yàn)橹貜?fù)的因數(shù)只要寫一個(gè)就可以了,所以不需要寫兩個(gè)6)
仔細(xì)看看,36的因數(shù)中,最小的是幾,最大的是幾?
看來,任何一個(gè)數(shù)的因數(shù),最小的一定是( ),而最大的一定是( )。
3、你還想找哪個(gè)數(shù)的因數(shù)?(18、5、42……)請你選擇其中的一個(gè)在自練本上寫一寫,然后匯報(bào)。
4、其實(shí)寫一個(gè)數(shù)的因數(shù)除了這樣寫以外,還可以用集合表示:如
18的因數(shù)
小結(jié):我們找了這么多數(shù)的因數(shù),你覺得怎樣找才不容易漏掉?
從最小的自然數(shù)1找起,也就是從最小的因數(shù)找起,一直找到它的本身,找的過程中一對一對找,寫的時(shí)候從小到大寫。
(二)找倍數(shù):
1、我們一起找到了18的因數(shù),那2的倍數(shù)你能找出來嗎?
匯報(bào):2、4、6、8、10、16、……
師:為什么找不完?
你是怎么找到這些倍數(shù)的? (生:只要用2去乘1、乘2、乘3、乘4、…)
那么2的倍數(shù)最小是幾?最大的你能找到嗎?
2、讓學(xué)生完成做一做1、2小題:找3和5的倍數(shù)。
匯報(bào) 3的倍數(shù)有:3,6,9,12
師:這樣寫可以嗎?為什么?應(yīng)該怎么改呢?
改寫成:3的倍數(shù)有:3,6,9,12,……
你是怎么找的?(用3分別乘以1,2,3,……倍)
5的倍數(shù)有:5,10,15,20,……
師:表示一個(gè)數(shù)的倍數(shù)情況,除了用這種文字?jǐn)⑹龅姆椒ㄍ猓可以用集合來表示
2的倍數(shù) 3的倍數(shù) 5的倍數(shù)
師:我們知道一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,那么一個(gè)數(shù)的倍數(shù)個(gè)數(shù)是怎么樣的呢?
(一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))
三、課堂小結(jié):
我們一起來回憶一下,這節(jié)課我們重點(diǎn)研究了一個(gè)什么問題?你有什么收獲呢?
四、獨(dú)立作業(yè):
完成練習(xí)二1~4題
教學(xué)反思:
第二單元 因數(shù)和倍數(shù) 篇3
第二單元因數(shù)和倍數(shù)教學(xué)反思
《因數(shù)和倍數(shù)》是一節(jié)概念課。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)112=12,26=12,34=12三個(gè)乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對,無論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個(gè)給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語言評價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時(shí)放手,會(huì)看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
因數(shù)和倍數(shù)教學(xué)反思
一.數(shù)形結(jié)合減緩難度
《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個(gè)小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學(xué)生的形象思維,而透過數(shù)學(xué)潛在的“形”與“數(shù)”的關(guān)系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉(zhuǎn)入抽象思維打下了良好基礎(chǔ),有效地實(shí)現(xiàn)了原有知識(shí)與新學(xué)知識(shí)之間的鏈接。在學(xué)生已有的知識(shí)基礎(chǔ)上,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
二.自主探究,合作學(xué)習(xí)
放手讓每個(gè)同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個(gè)問題,去尋找36的所有因數(shù)。由于個(gè)人經(jīng)驗(yàn)和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的不同中通過合作交流找到相同。
三.在游戲中體驗(yàn)學(xué)習(xí)的快樂
在最后的環(huán)節(jié)中我設(shè)計(jì)了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個(gè)數(shù)找到共同的朋友。這樣由淺入深的設(shè)計(jì)符合學(xué)生跳一跳就能摘到果子的心理,同時(shí)也讓學(xué)生在游戲中再次體驗(yàn)因數(shù)與倍數(shù)的特點(diǎn),如找完因數(shù)朋友時(shí)我以你是我的最大的因數(shù)朋友點(diǎn)出一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,找倍數(shù)朋友時(shí)起來的學(xué)生非常多,讓學(xué)生再次體驗(yàn)一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的。找共同的朋友則是一個(gè)思維的升華過程,能有效地激活學(xué)生的思維,在求知欲的支配下去進(jìn)行有效地思考。這一環(huán)節(jié)使課堂氣氛更加熱烈,也讓學(xué)生在輕松的氛圍中體驗(yàn)到學(xué)習(xí)的快樂。
這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找36的因數(shù)這一環(huán)節(jié)時(shí),由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯(cuò)誤,所以引導(dǎo)的過多講解的過細(xì),因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。雖然是新理念但卻沿用了舊模式,在今后的教學(xué)中我還要不斷改進(jìn)自己的教法,讓學(xué)生成為課堂的真正主人。
這堂課我的個(gè)人語言過于隨意,數(shù)學(xué)是嚴(yán)謹(jǐn)?shù)模S意性的語言會(huì)對學(xué)生的學(xué)習(xí)理解造成一定的影響。由于長期的教學(xué)習(xí)慣和自身的性格特點(diǎn)造成了我的語言在某些時(shí)候不夠嚴(yán)謹(jǐn)。這一點(diǎn)我心里非常清楚,在日常的教學(xué)中也在不斷地改正,但這節(jié)課有的地方還是沒有注意到。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進(jìn)優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機(jī)會(huì),通過各種渠道不斷的學(xué)習(xí),提高自己的素質(zhì)。多反思認(rèn)真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。
感謝各位老師給我這么一個(gè)寶貴的學(xué)習(xí)機(jī)會(huì),并在這個(gè)過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機(jī),不斷完善教學(xué),總結(jié)經(jīng)驗(yàn)教訓(xùn),在各個(gè)方面嚴(yán)格要求自己,爭取在今后的工作中做的更好!
第二單元 因數(shù)和倍數(shù) 篇4
教學(xué)目標(biāo):
1、理解質(zhì)數(shù)和合數(shù)的概念,并能判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù),會(huì)把自然數(shù)按約數(shù)的個(gè)數(shù)進(jìn)行分類。2、培養(yǎng)學(xué)生自主探索、獨(dú)立思考、合作交流的能力。
3、培養(yǎng)學(xué)生敢于探索科學(xué)之謎的精神,充分展示數(shù)學(xué)自身的魅力。
教學(xué)重點(diǎn):
1、理解掌握質(zhì)數(shù)、合數(shù)的概念。
2、初步學(xué)會(huì)準(zhǔn)確判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù)。
教學(xué)難點(diǎn):區(qū)分奇數(shù)、質(zhì)數(shù)、偶數(shù)、合數(shù)。
教學(xué)過程:
一、探究發(fā)現(xiàn),總結(jié)概念:
1、師:(出示三個(gè)同樣的小正方形)每個(gè)正方形的邊長為1,用這樣的三個(gè)正方形拼成一個(gè)長方形,你能拼出幾個(gè)不同的長方形?
學(xué)生獨(dú)立思考,然后全班交流。
2、師:這樣的四個(gè)小正方形能拼出幾個(gè)不同的長方形?
學(xué)生各自獨(dú)立思考,想像后舉手回答。
3、師:同學(xué)們再想一下,如果有12個(gè)這樣的小正方形,你能拼出幾個(gè)不同的長方形?
師:我看到許多同學(xué)不用畫就已經(jīng)知道了。(指名說一說)
4、師:同學(xué)們,如果給出的正方形的個(gè)數(shù)越多,那拼出的不同的長方形的個(gè)數(shù)——,你覺得會(huì)怎么樣?
學(xué)生幾乎是異口同聲地說:會(huì)越多。
師:確定嗎?(引導(dǎo)學(xué)生展開討論。)
5、師:同學(xué)們,用小正方形拼長方形,有時(shí)只能拼出一種,有時(shí)拼出的長方形不止一種。你覺得當(dāng)小正方形的個(gè)數(shù)是什么數(shù)的時(shí)候,只能拼一種? 什么情況下拼得的長方形不止一種?并舉例說明。
先讓學(xué)生小組討論,然后全班交流,師根據(jù)學(xué)生的回答板書。
師:同學(xué)們,像上面這些數(shù)(板書的3、13、7、5、11等數(shù)),在數(shù)學(xué)上我們把它們叫做質(zhì)數(shù),下面的這些數(shù)(4、6、8、9、10、12、14、15等數(shù))我們把它們叫做合數(shù)。那究竟什么樣的數(shù)叫質(zhì)數(shù),什么樣的數(shù)叫合數(shù)呢?
學(xué)生獨(dú)立思考后,在小組內(nèi)進(jìn)行交流,然后再全班交流。
引導(dǎo)學(xué)生總結(jié)質(zhì)數(shù)和合數(shù)的概念,結(jié)合學(xué)生回答,教師板書:(略)
6、讓學(xué)生舉例說說哪些數(shù)是質(zhì)數(shù),哪些數(shù)是合數(shù),并說出理由。
7、師:那你們認(rèn)為“1”是什么數(shù)?
讓學(xué)生獨(dú)立思考,后展開討論。
二、動(dòng)手操作,制質(zhì)數(shù)表。
1、師出示:73。讓學(xué)生思考著它是不是質(zhì)數(shù)。
師:要想馬上知道73是什么數(shù)還真不容易。如果有質(zhì)數(shù)表可查就方便了。(同學(xué)們都說“是呀”。)
師:這表從哪來呢?
(教師出示百以內(nèi)數(shù)表)這上面是1到100這100個(gè)數(shù),它不是質(zhì)數(shù)表,你們能不能想辦法找出100以內(nèi)的質(zhì)數(shù),制成質(zhì)數(shù)表?誰來說說自己的想法?(讓學(xué)生充分發(fā)表自己的想法。)
2、讓學(xué)生動(dòng)手制作質(zhì)數(shù)表。
3、集體交流方法。
三、練習(xí)鞏固:
完成練習(xí)四第1、2題。
四、課題小結(jié):
這節(jié)課你在激烈的討論中有什么收獲?
第二單元 因數(shù)和倍數(shù) 篇5
五年級數(shù)學(xué)下冊第二單元因數(shù)和倍數(shù)教學(xué)反思
因數(shù)與倍數(shù)屬于數(shù)論中的知識(shí),是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識(shí)經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識(shí)了乘法各部分名稱,對“倍”葉有了初步的認(rèn)識(shí),從而本課由此入手,讓學(xué)生由熟悉的知識(shí)經(jīng)驗(yàn)開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識(shí)結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。
在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。
本課中還要注意到的就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。
人教版五年級數(shù)學(xué)下冊第二單元《因數(shù)與倍數(shù)》教學(xué)反思
本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別。還要掌握2、5、3的倍數(shù)的特征。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接
本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別。還要掌握2、5、3的倍數(shù)的特征。這一單元的內(nèi)容與原來教材比較有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。從學(xué)生學(xué)習(xí)的情況來看,這一改變并沒有對學(xué)生造成任何影響。
本單元的內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。在教學(xué)過程中,本人就忽視了概念的本質(zhì),而是讓學(xué)生死記硬背相關(guān)概念或結(jié)論,學(xué)生無法理清各概念間的前后承接關(guān)系,達(dá)不到融會(huì)貫通的程度,所以教學(xué)效果也不怎么理想。要解決教學(xué)中出現(xiàn)的問題,經(jīng)過反思,我認(rèn)為要做好兩點(diǎn):
(1)加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。本單元中因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義,對于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無限的等結(jié)論自然也就掌握了,對于后面的公因數(shù)、公倍數(shù)等概念的理解也是水到渠成。要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識(shí),而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。
(2)由于本單元知識(shí)特有的抽象性,教學(xué)時(shí)要注意培養(yǎng)學(xué)生的抽象思維能力。雖然我們強(qiáng)調(diào)從生活的角度引出數(shù)學(xué)知識(shí),但本單元不太容易與具體情境結(jié)合起來,如質(zhì)數(shù)、合數(shù)等概念,很難從生活實(shí)際中引入。而學(xué)生到了五年級,抽象能力已經(jīng)有了進(jìn)一步發(fā)展,有意識(shí)地培養(yǎng)他們的抽象概括能力也是很有必要的,如讓學(xué)生通過幾個(gè)特殊的例子,自行總結(jié)出任何一個(gè)數(shù)的倍數(shù)個(gè)數(shù)都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。
第二單元 因數(shù)和倍數(shù) 篇6
新課標(biāo)實(shí)驗(yàn)教材五年級 五下第二單元因數(shù)和倍數(shù)
一、教學(xué)內(nèi)容
1.因數(shù)和倍數(shù)
2. 2、5、3的倍數(shù)的特征
3.質(zhì)數(shù)和合數(shù)
二、教學(xué)目標(biāo)
1.使學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,知道有關(guān)概念之間的聯(lián)系和區(qū)別。
2.使學(xué)生通過自主探索,掌握2、5、3的倍數(shù)的特征。
3.逐步培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。
三、編排特點(diǎn)
1.精簡概念,減輕學(xué)生記憶負(fù)擔(dān)。
(1)不再出現(xiàn)“整除”概念,直接從乘法算式引出因數(shù)和倍數(shù)的概念。
(2)不再正式教學(xué)“分解質(zhì)因數(shù)”,只作為閱讀性材料進(jìn)行介紹。
(3)公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)移至“分?jǐn)?shù)的意義和性質(zhì)”單元,作為約分和通分的知識(shí)基礎(chǔ),更突出其應(yīng)用性。
2.注意體現(xiàn)數(shù)學(xué)的抽象性。
數(shù)論知識(shí)本身具有抽象性。學(xué)生到了高年級也應(yīng)注意培養(yǎng)其抽象思維。
四、具體編排
1.因數(shù)和倍數(shù)
因數(shù)和倍數(shù)的概念:
過去:用b÷a=n表示b能被a整除,b÷n=n表示b能被n整除。
現(xiàn)在:用na=b直接引出因數(shù)和倍數(shù)的概念。
(1)用2×6=12給出因數(shù)和倍數(shù)的概念。
(2)用3×4=12進(jìn)一步鞏固上述概念。
(3)讓學(xué)生利用因數(shù)和倍數(shù)的概念自主發(fā)現(xiàn)12的其他因數(shù)。
(4)可引導(dǎo)學(xué)生利用一般的乘法算式×=歸納出因數(shù)和倍數(shù)的概念。
(5)說明本單元的研究范圍。
注意以下幾點(diǎn):
(1)雖然不出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ),因此,乘法算式中的乘數(shù)和積都必須是整數(shù)。
(2)因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在。
(3)注意區(qū)分乘法各部分名稱中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。
(4)注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別。
例1:一個(gè)數(shù)的因數(shù)的求法
(1)可用不同的方法求出18的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式),但應(yīng)引導(dǎo)學(xué)生有序思考。
(2)用集合圈表示因數(shù),為后面求兩個(gè)數(shù)的公因數(shù)作鋪墊。
一個(gè)數(shù)的因數(shù)的特點(diǎn):
(1)最大因數(shù)是其自身,最小因數(shù)是1。
(2)因數(shù)個(gè)數(shù)有限。
(3)此結(jié)論通過例1和“做一做”中的特例通過不完全歸納法得出,體現(xiàn)了從具體到一般的思路。
例2:一個(gè)數(shù)的倍數(shù)的求法
(1)求法:用該數(shù)乘任一非0自然數(shù)所得的積都是該數(shù)的倍數(shù)。
(2)用集合圈表示倍數(shù),為后面求兩個(gè)數(shù)的公倍數(shù)作鋪墊。
做一做
與例1結(jié)合起來,提供了2、3、5的倍數(shù),為后面探討2、3、5倍數(shù)的特征做準(zhǔn)備。
一個(gè)數(shù)的倍數(shù)的特點(diǎn):
(1)最小倍數(shù)是其自身,沒有最大的倍數(shù)。
(2)因數(shù)個(gè)數(shù)無限。
(3)此結(jié)論通過例1和“做一做”中的特例通過不完全歸納法得出,體現(xiàn)了從具體到一般的思路。
2.2、5、3的倍數(shù)的特征
因?yàn)?、5的倍數(shù)的特征在個(gè)位數(shù)上就體現(xiàn)出來了,而3的倍數(shù)涉及到各數(shù)位上的數(shù)字之和,較為復(fù)雜,因此后安排3的倍數(shù)的特征。本部分內(nèi)容對于熟練掌握約分、通分、分?jǐn)?shù)的四則運(yùn)算有很重要的作用。
2的倍數(shù)的特征
(1)從生活情境“雙號”引入。
(2)觀察2的倍數(shù)的個(gè)位數(shù),總結(jié)出2的倍數(shù)的特征。
(3)介紹奇數(shù)和偶數(shù)的概念。
(4)可讓學(xué)生隨意找一些數(shù)進(jìn)行驗(yàn)證,但不要求嚴(yán)格的證明。
5的倍數(shù)的特征
(1)編排方式與2的倍數(shù)的特征類似。
(2)可進(jìn)一步總結(jié)既是2的倍數(shù)又是5的倍數(shù)的特征,即10的倍數(shù)的特征。
3的倍數(shù)的特征
(1)強(qiáng)調(diào)自主探索,讓學(xué)生經(jīng)歷觀察――猜想――推翻猜想――再觀察――再猜想――驗(yàn)證的過程。
(2)可任意選擇一個(gè)數(shù),用正面、反面的例子對結(jié)論進(jìn)一步驗(yàn)證。
(3)也可對任一3的倍數(shù)的各位數(shù)調(diào)換位置,更深刻地理解3的倍數(shù)的特征。
3.質(zhì)數(shù)和合數(shù)
質(zhì)數(shù)和合數(shù)的概念:
(1)根據(jù)20以內(nèi)各數(shù)的因數(shù)個(gè)數(shù)把數(shù)分成三類:1、質(zhì)數(shù)、合數(shù)。
(2)可任出一個(gè)數(shù),讓學(xué)生根據(jù)概念判斷其為質(zhì)數(shù)還是合數(shù)。
例1:找100以內(nèi)的質(zhì)數(shù)
(1)方法多樣。可以根據(jù)質(zhì)數(shù)的概念逐個(gè)判斷,也可用篩法。
(2)把握教學(xué)要求:知道100以內(nèi)的質(zhì)數(shù),熟悉20以內(nèi)的質(zhì)數(shù)。
五、教學(xué)建議
1.加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。
從因數(shù)和倍數(shù)的含義去理解其他的相關(guān)概念。
2.要注意培養(yǎng)學(xué)生的抽象思維能力。