分數與除法的關系教案
老師講述:分數是一種數,除法是一種運算,所以確切地說,分數的分子相當于除法的被除數,分數的分母相當于除法的除數。
( 2 )思考。
在被除數÷除數= 這個算式中,要注意什么問題?(除數不能是零,分數的分母也不能是零。)
( 3 )用字母表示分數與除法的關系。
老師:如果用字母a 、b 分別表示被除數和除數,那么除數與分數之間的關系怎樣表示呢?
老師依據學生的總結板書:a÷b = (b≠0)
明確:兩個整數相除,商可以用分數表示,反過來,分數能不能看作兩個整數相除?(可以,分數的分子相當于除法中的被除法,分母相當于除數。)
老師:現在想想用這節課我們所學知識,能否解答剛上課時5 ÷ 9 的商是多少?你會做了嗎?
后記:
第二課時 分數與除法的關系
一 教學內容
分數與除法
教材第66頁的例3及做一做。
二 教學目標
1 .使學生掌握分數與除法的關系。
2 ,培養學生的應用意識。
三 重點難點
1 .理解、歸納分數與除法的關系。
2 .用除法的意義理解分數的意義。
四 教具準備
圓片。
五 教學過程
(一)引入。
老師:5 除以9 ,商是多少?(板書:5 ÷ 9 = )如果商不用小數表示,還有其他方法嗎?學習了分數與除法的關系后,就能解決這個問題了。
板書課題:分數與除法的關系
(二)教學實施
1 .學習例3 。
( 1 )板書例題。
小新家養鵝7 只,養鴨10 只。養鵝的只數是鴨的幾分之幾?
( 2 )指名讀題,理解題意并列出算式。板書:7÷10
( 3 )利用除法和分數的關系得出結果。
7 ÷ 10 =
所以養鵝的只數是鴨的 。
三)思維訓練
1 .把8 米長的繩子平均分成13 段,每段長多少米?
2 .把一個5 平方米的圓形花壇分成大小相同的6 塊,每一塊是多少平方米?(用分數表示)
四)課堂小結
通過今天這節課的觀察、操作,同學們發現了分數與除法之間的關系。分數的分子相當于除法的被除數,分數的分母相當于除法的除數,除號相當于分數的分數線。
后記: