中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 八年級數學教案 > 14.3等腰三角形(精選16篇)

14.3等腰三角形

發布時間:2023-08-27

14.3等腰三角形(精選16篇)

14.3等腰三角形 篇1

  §14.3.1.1  (二)

  教學目標

  1、 理解并掌握等腰三角形的判定定理及推論

  2、 能利用其性質與判定證明線段或角的相等關系.

  教學重點

  等腰三角形的判定定理及推論的運用

  教學難點

  正確區分等腰三角形的判定與性質.

  能夠利用等腰三角形的判定定理證明線段的相等關系.

  教學過程:

  一、復習等腰三角形的性質

  二、新授:

  i提出問題,創設情境

  出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(b點)為b標,然后在這棵樹的正南方(南岸a點抽一小旗作標志)沿南偏東60°方向走一段距離到c處時,測得∠acb為30°,這時,地質專家測得ac的長度就可知河流寬度.

  學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.

  ii引入新課

  1.由性質定理的題設和結論的變化,引出研究的內容——在△abc中,苦∠b=∠c,則ab= ac嗎?

  作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?

  2.引導學生根據圖形,寫出已知、求證.

  2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

  強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.

  4.引導學生說出引例中地質專家的測量方法的根據.

  iii例題與練習

  1.如圖2

  其中△abc是等腰三角形的是 [ ]

  2.①如圖3,已知△abc中,ab=ac.∠a=36°,則∠c______(根據什么?).

  ②如圖4,已知△abc中,∠a=36°,∠c=72°,△abc是______三角形(根據什么?).

  ③若已知∠a=36°,∠c=72°,bd平分∠abc交ac于d,判斷圖5中等腰三角形有______.

  ④若已知 ad=4cm,則bc______cm.

  3.以問題形式引出推論l______.

  4.以問題形式引出推論2______.

  例: 如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.

  分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.

  練習:5.(l)如圖6,在△abc中,ab=ac,∠abc、∠acb的平分線相交于點f,過f作de//bc,交ab于點d,交ac于e.問圖中哪些三角形是等腰三角形?

  (2)上題中,若去掉條件ab=ac,其他條件不變,圖6中還有等腰三角形嗎?

  iv課堂小結

  1.判定一個三角形是等腰三角形有幾種方法?

  2.判定一個三角形是等邊三角形有幾種方法?

  3.等腰三角形的性質定理與判定定理有何關系?

  4.現在證明線段相等問題,一般應從幾方面考慮?

  v布置作業

  1.閱讀教材

  2.書面作業:教材第150頁第12題

  3、《課堂感悟與探究》

14.3等腰三角形 篇2

  14.3   課時安排4課時    從容說課    前面兩節中,通過對生活中的軸對稱現象的認識,進一步對軸對稱的性質作了研究,還探討了軸對稱變換,能夠作出一些簡單的平面圖形關于一條直線的對稱圖形,所以學生對這些結論已經有所了解.    本節在我們已學過的知識的基礎上,進一步認識特殊的軸對稱圖形──等腰三角形,并探究等腰三角形的性質及等腰三角形的判定.在探究等腰三角形的相關問題時,再對等邊三角形的相關內容進行深入探討.    本節的重點是探索等腰三角形和等邊三角形的性質及判定,并利用這些性質和判定求解相關的問題,進一步發展學生的數學思維.本節的重點同時也是本節的難點.教師在教學中,不可操之過急,應逐步引導,讓學生去發現去探索這些性質,學生對它的理解要有一個過程,對它的應用也要慢慢去認識,并且在教學中要注意對學生數學思想的滲透以及分析問題、解決問題能力的培養.

  §14.3.1.1  等腰三角形(一)第七課時    教學目標    (一)教學知識點    1.等腰三角形的概念.    2.等腰三角形的性質.    3.等腰三角形的概念及性質的應用.

  1.經歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點.

  2.探索并掌握等腰三角形的性質.    (三)情感與價值觀要求    通過學生的操作和思考,使學生掌握等腰三角形的相關概念,并在探究等腰三角形性質的過程中培養學生認真思考的習慣.    教學重點    1.等腰三角形的概念及性質.    2.等腰三角形性質的應用.    教學難點    等腰三角形三線合一的性質的理解及其應用.    教學方法    探究歸納法.    教具準備    師:多媒體課件、投影儀;    生:硬紙、剪刀.    教學過程    ⅰ.提出問題,創設情境    [師]在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

  [生]有的三角形是軸對稱圖形,有的三角形不是.

  [師]那什么樣的三角形是軸對稱圖形?

  [生]滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

  [師]很好,我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

  ⅱ.導入新課

  [師]同學們通過自己的思考來做一個等腰三角形.

  作一條直線l,在l上取點a,在l外取點b,作出點b關于直線l的對稱點c,連結ab、bc、ca,則可得到一個等腰三角形.

  [生乙]在甲同學的做法中,a點可以取直線l上的任意一點.

  [師]對,按這種方法我們可以得到一系列的等腰三角形.現在同學們拿出自己準備的硬紙和剪刀,按自己設計的方法,也可以用課本p138探究中的方法,剪出一個等腰三角形.

  ……

  [師]按照我們的做法,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

  [師]有了上述概念,同學們來想一想.

  (演示課件)

  1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

  2.等腰三角形的兩底角有什么關系?

  3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

  4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

  [生甲]等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

  [師]同學們把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

  [生乙]我把自己做的等腰三角形折疊后,發現等腰三角形的兩個底角相等.

  [生丙]我把等腰三角形折疊,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線.

  [生丁]我把等腰三角形沿底邊上的中線對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對稱軸.

  [生戊]老師,我發現底邊上的高所在的直線也是等腰三角形的對稱軸.

  [師]你們說的是同一條直線嗎?大家來動手折疊、觀察.

  [生齊聲]它們是同一條直線.

  [師]很好.現在同學們來歸納等腰三角形的性質.

  [生]我沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.    [師]很好,大家看屏幕.(演示課件)    等腰三角形的性質:1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).    2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).[師]由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).    (投影儀演示學生證明過程)    [生甲]如右圖,在△abc中,ab=ac,作底邊bc的中線ad,因為

  所以△bad≌△cad(sss).    所以∠b=∠c.    [生乙]如右圖,在△abc中,ab=ac,作頂角∠bac的角平分線ad,因為         所以△bad≌△cad.    所以bd=cd,∠bda=∠cda= ∠bdc=90°.    [師]很好,甲、乙兩同學給出了等腰三角形兩個性質的證明,過程也寫得很條理、很規范.下面我們來看大屏幕.(演示課件)[例1]如圖,在△abc中,ab=ac,點d在ac上,且bd=bc=ad,求:△abc各角的度數.    [師]同學們先思考一下,我們再來分析這個題.[生]根據等邊對等角的性質,我們可以得到∠a=∠abd,∠abc=∠c=∠bdc,再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.再由三角形內角和為180°,就可求出△abc的三個內角.    [師]這位同學分析得很好,對我們以前學過的定理也很熟悉.如果我們在解的過程中把∠a設為x的話,那么∠abc、∠c都可以用x來表示,這樣過程就更簡捷.    (課件演示)    [例]因為ab=ac,bd=bc=ad,    所以∠abc=∠c=∠bdc.    ∠a=∠abd(等邊對等角).    設∠a=x,則    ∠bdc=∠a+∠abd=2x,    從而∠abc=∠c=∠bdc=2x.    于是在△abc中,有    ∠a+∠abc+∠c=x+2x+2x=180°,    解得x=36°.    在△abc中,∠a=35°,∠abc=∠c=72°.[師]下面我們通過練習來鞏固這節課所學的知識.    ⅲ.隨堂練習    (一)課本p141練習 1、2、3.    練習

  1.    如下圖,在下列等腰三角形中,分別求出它們的底角的度數.        答案:(1)72°  (2)30°2.    如右圖,△abc是等腰直角三角形(ab=ac,∠bac=90°),ad是底邊bc上的高,標出∠b、∠c、∠bad、∠dac的度數,圖中有哪些相等線段?       答案:∠b=∠c=∠bad=∠dac=45°;ab=ac,bd=dc=ad.3.    如右圖,在△abc中,ab=ad=dc,∠bad=26°,求∠b和∠c的度數. 答:∠b=77°,∠c=38.5°.(二)閱讀課本p138~p140,然后小結.    ⅳ.課時小結    這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.    ⅴ.課后作業    (一)課本p147─1、3、4、8題.    (二)1.預習課本p141~p143.    2.預習提綱:等腰三角形的判定.    ⅵ.活動與探究

  如右圖,在△abc中,過c作∠bac的平分線ad的垂線,垂足為d,de∥ab交ac于e.求證:ae=ce.     過程:通過分析、討論,讓學生進一步了解全等三角形的性質和判定,等腰三角形的性質.    結果:    證明:延長cd交ab的延長線于p,如右圖,在△adp和△adc中         ∴△adp≌△adc.∴∠p=∠acd.    又∵de∥ap,    ∴∠4=∠p.    ∴∠4=∠acd.    ∴de=ec.    同理可證:ae=de.    ∴ae=ce.    板書設計    §14.3.1.1  等腰三角形(一)    一、設計方案作出一個等腰三角形    二、等腰三角形性質    1.等邊對等角    2.三線合一    三、例題分析    四、隨堂練習    五、課時小結    六、課后作業    備課資料    參考練習    一、選擇題    1.如果△abc是軸對稱圖形,則它的對稱軸一定是(  )      a.某一條邊上的高;               b.某一條邊上的中線      c.平分一角和這個角對邊的直線;   d.某一個角的平分線    2.等腰三角形的一個外角是100°,它的頂角的度數是(  )      a.80°    b.20°    c.80°和20°     d.80°或50°      答案:1.c   2.c二、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm.      求這個等腰三角形的邊長.解:設三角形的底邊長為xcm,則其腰長為(x+2)cm,根據題意,得        2(x+2)+x=16.       解得x=4.   所以,等腰三角形的三邊長為4cm、6cm和6cm.

14.3等腰三角形 篇3

  §14.3.1.1  等腰三角形

  教學目標

  1.等腰三角形的概念.

  2.等腰三角形的性質.

  3.等腰三角形的概念及性質的應用.

  教學重點

  1.等腰三角形的概念及性質.

  2.等腰三角形性質的應用.

  教學難點

  等腰三角形三線合一的性質的理解及其應用.

  教學過程

  ⅰ.提出問題,創設情境

  在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

  有的三角形是軸對稱圖形,有的三角形不是.

  問題:那什么樣的三角形是軸對稱圖形?

  滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

  我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.

  ⅱ.導入新課

  要求學生通過自己的思考來做一個等腰三角形.

  作一條直線l,在l上取點a,在l外取點b,作出點b關于直線l的對稱點c,連結ab、bc、ca,則可得到一個等腰三角形.

  等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

  思考:

  1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

  2.等腰三角形的兩底角有什么關系?

  3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

  4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

  結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

  要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

  沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

  由此可以得到等腰三角形的性質:

  1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

  2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

  由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).

  如右圖,在△abc中,ab=ac,作底邊bc的中線ad,因為

  所以△bad≌△cad(sss).

  所以∠b=∠c.

  ]如右圖,在△abc中,ab=ac,作頂角∠bac的角平分線ad,因為

  所以△bad≌△cad.

  所以bd=cd,∠bda=∠cda= ∠bdc=90°.

  [例1]如圖,在△abc中,ab=ac,點d在ac上,且bd=bc=ad,

  求:△abc各角的度數.

  分析:

  根據等邊對等角的性質,我們可以得到

  ∠a=∠abd,∠abc=∠c=∠bdc,

  再由∠bdc=∠a+∠abd,就可得到∠abc=∠c=∠bdc=2∠a.

  再由三角形內角和為180°,就可求出△abc的三個內角.

  把∠a設為x的話,那么∠abc、∠c都可以用x來表示,這樣過程就更簡捷.

  解:因為ab=ac,bd=bc=ad,

  所以∠abc=∠c=∠bdc.

  ∠a=∠abd(等邊對等角).

  設∠a=x,則

  ∠bdc=∠a+∠abd=2x,

  從而∠abc=∠c=∠bdc=2x.

  于是在△abc中,有

  ∠a+∠abc+∠c=x+2x+2x=180°,

  解得x=36°.

  在△abc中,∠a=35°,∠abc=∠c=72°.

  [師]下面我們通過練習來鞏固這節課所學的知識.

  ⅲ.隨堂練習

  (一)課本p141練習 1、2、3.

  (二)閱讀課本p138~p140,然后小結.

  ⅳ.課時小結

  這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

  我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.

  ⅴ.作業

  (一)課本p147─1、3、4、8題.

  課后作業:<<課堂感悟與探究>>

  板書設計

  14.3.1.1  等腰三角形(一)

  一、設計方案作出一個等腰三角形

  二、等腰三角形性質

  1.等邊對等角

  2.三線合一

  參考練習

  一、選擇題

  1.如果△abc是軸對稱圖形,則它的對稱軸一定是(  )

  a.某一條邊上的高;               b.某一條邊上的中線

  c.平分一角和這個角對邊的直線;   d.某一個角的平分線

  2.等腰三角形的一個外角是100°,它的頂角的度數是(  )

  a.80°    b.20°    c.80°和20°     d.80°或50°

  答案:1.c   2.c

  二、已知等腰三角形的腰長比底邊多2cm,并且它的周長為16cm.

  求這個等腰三角形的邊長.

  解:設三角形的底邊長為xcm,則其腰長為(x+2)cm,根據題意,得

  2(x+2)+x=16.

  解得x=4.

  所以,等腰三角形的三邊長為4cm、6cm和6cm.

14.3等腰三角形 篇4

  教學目標:

  知識技能

  了解等腰三角形的性質,掌握等腰三角形的性質定理及推論,會用定理及推論解決簡單問題.

  數學思考

  培養學生探究思維、邏輯思維能力,探索引輔助線的規律.

  情感態度與價值觀:

  滲透"實踐--理論--實踐"的辯證唯物主義思想,培養探究分析數學知識方法的興趣,養成踏實細致、嚴謹科學的學習習慣.

  教學重點與難點

  重點:理解等腰三角形的性質定理、推論,并能用它們解決簡單的問題.

  難點:引輔助線證明定理和推論1的應用.

  教學過程與流程設計

  引導性材料:

  1. 學生把等腰三角形的兩腰疊在一起,發現它的兩個底角重合,這說明等腰三角形具有什么性質?(等腰三角形的兩個底角相等)(演示疊合過程)

  2. 教師用等腰三角形紙片演示兩腰疊合,再把紙片展開.

  提問:你能發現等腰三角形還有什么特性嗎?

  (引入課題,明確目標)(顯示教學目標)

  教學設計

  問題1:怎樣來證明“等腰三角形的兩個底角相等”呢?

  已知:如圖,△abc中,ab=ac.

  求證:∠b=∠c.

  (方法1)證明:作頂角的平分線ad.

  在△bad和△cad中.

  ab=ac (已知)

  ∠1=∠2 (輔助線作法)

  ad=ad (公共邊)

  ∴△bad≌△cad(sas)

  ∴∠b=∠c(全等三角形的對應角相等)

  問題2:上述命題還有哪些證法?

  方法2:作底邊bc上的高ad. (證明過程由學生口述)

  方法3:作底邊bc上的中線ad.(證明過程由學生口述)

  (演示):等腰三角形的性質定理    等腰三角形的兩個底角相等

  (簡寫成“等邊對等角”)

  觀察上述三種方法,思考如下問題:

  (1) 在等腰△abc中,如果ad是頂角的平分線,那么ad是否平分底邊?是否垂直于底邊?

  (2) 在等腰△abc中,如果ad是底邊上的高,那么ad是否平分頂角?是否平分底邊?

  (3) 在等腰△abc中,如果ad是底邊上的中線,那么ad是否平分頂角?是否垂直于底邊?

  推論1  等腰三角形頂角的平分線平分底邊并且垂直于底邊.

  (等腰三角形的頂角平分線、底邊上中線、底邊上的高互相重合.)

  練習:填空,在△abc中,

  (1) ∵ab=ac,ad⊥bc,

  ∴∠  =∠  ,     =     .

  (2) ∵ab=ac,ad是中線,

  ∴  ⊥  ,∠  =∠  .

  (3) ∵ab=ac,ad是角平分線,

  ∴  ⊥  ,     =     .

  問題2:等邊三角形是特殊的等腰三角形,除具有等腰三角形的性質外,還有特殊的性質嗎?

  推論2:等邊三角形的各角都相等,并且每一個角都等于60°.(學生完成證明)

  已知:如圖,△abc中,ab=ac=bc.

  求證:∠a=∠b=∠c=60°

  證明:∵ ab=ac,

  ∴∠b=∠c(等邊對等角),

  ∵ac=bc,

  ∴∠a=∠b(等邊對等角),

  ∴∠a=∠b=∠c,

  ∵∠a+∠b+∠c=180°(三角形內角和定理),

  ∴∠a=∠b=∠c=60°

  例題解析:

  例1:填空,1.在△abc中,ab=ac.

  (1) 若∠a=50°,則∠b=      °,∠c=      °;

  (2) 若∠b=45°,則∠a=      °,∠c=      °;

  (3) 若∠b=∠a,則∠a=      °,∠c=      °;

  (4) 若∠b=2∠a,則∠a=      °,∠c=      °.

  2.等腰三角形的一個角是40°,則它的底角是                     .

  3.等腰三角形的一個角是120°,則它的底角是                      .

  例2:已知,如圖(6),房頂的頂角∠bac=100°,過屋頂a的立柱ad⊥bc,屋椽ab=ac,求頂架上∠b、∠c、∠bad、∠cad的度數.

  解:在△abc中,

  ∵ab=ac(已知),

  ∴∠b=∠c (等底對等角),

  ∴∠b=∠c=(180°-∠bac)=40°,

  (三角形內角和定理),

  又∵ad⊥bc(已知),

  ∴∠bad=∠cad(等腰三角形頂角的平分線與底邊上的高互相重合),

  ∵∠bac=100°,                  

  (7)              ∴

  課堂練習:

  已知:如圖(7)中的三角形測平架中,ab=ac,在bc的中點掛一個重錘,自然下垂,調整架身,使點恰好在重錘線上.

  求證:(1)ad⊥bc;

  (2)這時bc處于水平位置,為什么?

  課堂小結:

  1. 等腰三角形的性質定理:“等邊對等角”,揭示了同一個三角形中邊與角之間的關系;

  2. 等腰三角形性質定理的推論1、推論2;

  3. 由推論1知,等腰三角形“底邊上的三條主要線段互相重合”,這條線段具有三種不同的“身份”,因此,它是推證兩條線段相等、角相等以及兩條直線互相垂直必須關注的“熱線”.

  4. 掌握證明幾何命題的完整過程,以及不同輔助線的添法,從中體驗數學知識的美妙.

  作業:習題14.3  第6、7題(作業本),其他課本

14.3等腰三角形 篇5

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性質》是“華東師大版八年級數學(上)”第十三章第三節第一課時的內容。本節先課利用軸對稱的知識來探索發現等腰三角形的有關性質,然后利用全等三角形的知識證明這些性質。學習過程中運用的“操作——觀察——發現——猜想——論證——應用”的方法是探究數學知識的常用方法。同時“等邊對等角”和“三線合一”的性質是又是接下來學習等邊三角形知識以及等腰三角形的判定的基礎知識,更是今后論證兩個角相等、兩條線段相等、兩條線垂直的重要依據。起著承前啟后的作用。

  2、教材的教學目標:

  ①知識與技能目標:

  掌握等腰三角形的有關概念和相關性質,能運用它們解決等腰三角形的邊、角計算問題。

  ②過程與方法目標:

  通過實踐、觀察、同組間學生以及小組與小組間的合作與交流,培養學生多角度思考問題和分析問題、解決問題的能力。③情感與態度目標:

  通過合作交流培養學生團結協作、樂于助人的品質。

  3、教學重點與難點:

  重點:等腰三角形“等邊對等角”和“三線合一”性質的探究和應用。難點:等腰三角形性質的推理證明。

  二、學情分析

  八年級上期學生學習幾何知識有了初步的抽象思維感知,有一定的形象直觀思維能力,能進行簡單的推理論證。但其運用數學思維的廣闊性、緊密性、靈活性比較欠缺,在學習過程中要加強引導和培養。

  三、教法與手段

  根據本課內容特點和初二學生思維活動的特點,在教學中我將采用“操作——觀察——發現——猜想——論證——應用”的教學法,利用分組活動,組間合作與交流從而達到對“等邊對等角”和“三線合一”的性質的探究的層層深入。另外,我還將采用多媒體輔助教學,呈現更直觀的形象,激發學生的積極性、主動性,增大課堂容量,提高教學效率。

  四、學法設計

  《數學課程標準》指出:數學的抽象結論,應以觀察、實驗為前提,幾何教學應該把實驗方法與邏輯分析結合起來。結合這一理念在探究等腰三角形的性質時我將采用學生實驗操作、小組合作、觀察發現、師生互動、學生互動的學習方式。

  五、教學過程設計

  (一)創設情景、導入新課

  ①復習提問:向同學們出示幾張精美的建筑物圖片,引入等腰三角形。

  (設計意圖:感知數學知識和實際生活聯系緊密,培養觀察力,感受身邊處處有數學。)

  ②等腰三角形的相關概念:

  定義:兩條邊相等的三角形叫做等腰三角形。

  邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。

  角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。

  ③設問:等腰三角形具有哪些特殊的性質呢?(引入新課)

  (二)實驗探索、得出猜想:

  ①動動手:讓同學們用剪刀在長方形紙片上剪下等腰三角形,每個人的等腰三角形的大小

  和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發現什么現象?“比一比”看誰思考的結論最多。

  (設計意圖:以六人小組為單位學生親自操作實驗,填寫導學案。通過組內合作與交流,集

  思廣益讓學生用自己的語言在小組內表達自己的發現。)

  ②得出猜想:可讓學生有充分的時間觀察、思考、交流、可能得到的結論:

  (1)等腰三角形是軸對稱圖形

  (2)∠B=∠C

  (3)BD=CD,AD為底邊上的中線

  (4)∠ADB=∠ADC=90°,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線

  (設計意圖:以小組為單位派代表發言即組間交流補充,引導歸納提煉,使不同層次的學生都能感受新知,建立新的知識體系,為進一步探索做準備。)

  (三)證明猜想、形成定理:

  1、結論(2)∠B=∠C你能用一個命題表達這一結論并論證它的正確性嗎?

  (1)語言總結:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  (2)怎樣論證這個一命題的正確性呢?

  ①為證∠B=∠C,需要添加輔助線構造以∠B、∠C為元素的兩個全等三角形。

  ②探討添加輔助線的方法,讓學生選擇一種輔助線并完成證明過程。

  設計說明:以上過程分小組討論,在探索過程中鼓勵學生尋求不同(作高、中線、角平分線)的方法來解決問題。

  利用展臺展示各小組不同的證明方法,讓學生的個性得到充分的展示。

  (3)得出等腰三角形的性質1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  2、結論(3)(4)(5)你也能用一個命題表達這一結論并論證它的正確性嗎?

  (1)結合性質一的證明鼓勵學生證明總結的命題

  (2)得出等腰三角形的性質2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。

  (3)“三線合一”的幾何表達:

  如圖,在△ABC中,AB=AC,點D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2設計意圖:充分調動各組學生的積極性、主動性,采用各小組競爭的方式,參照性質1的探索完成本性質的探索與證明。通過本性質的探索讓不同的學生有不同的收獲,讓每個學生的能力都得到提升。

  (四)實例剖析、鞏固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數

  2、例2:在△ABC中,AB=AC,點D是BC的中點,∠B=30

  (1)求∠ADC的度數(2)求∠BAD的度數

  此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質的綜合運用,以及怎么書寫解答題,強調“三線合一”的表達過程。

  解:(1)∵AB=AC,D是BC邊上的中點(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形內角和等于180°)∴∠BAD=180°-∠B-∠ADB=180°-30°-90°=60°

  (設計意圖:設計例題1鞏固等腰三角形“等邊對等角的性質”的理解,讓學生學以致用,獲得成就感,增強學習數學的自信心。而例題2主要是體會等腰三角形“三線合一”性質的運用。這兩個例題作為課本上的例題是基礎新知的鞏固,要求能正確的寫出解題過程。)

  (五)課堂練習、總結所得:

  1、先完成課后81頁練習1、2、3、4題

  (設計意圖:作為課本上的練習題的完成達到檢測學生對本節課知識的掌握情況,從而幫助學生查漏補缺,鞏固基礎知識。)

  2、學以致用:

  (設計意圖:讓書生體會數學知識和實際生活的緊密聯系)

  如圖,是西安半坡博物館屋頂的截面圖,已經知道它的兩邊AB和AC是相等的.建筑工人師傅對這個建筑物做出了兩個判斷:

  ①工人師傅在測量了∠B為37°以后,并沒有測量∠C,就說∠C的度數也是37°。

  ②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認為木樁是垂直橫梁的。

  請同學們想想,工人師傅的說法對嗎?請說明理由。

  設計意圖:運用所學知識解決實際問題,引導學生將實際問題轉化為數學問題,進一步加深學生對等腰三角形性質的理解和運用;從數學回到實際生活,自然地滲透數學作用于實際問題的思想。

  3、課堂小結

  今天我們學習了什么?你覺得在等腰三角形的學習中要注意哪些問題?設計意圖:幫助學生回顧,歸納,鞏固所學知識。A(六)作業布置、深化提高:

  1、課本P84:習題13.31、2、3;(必做題)

  2、(思維發散)選做題

  已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求證:∠ACE=∠BC

  六、板書設計

14.3等腰三角形 篇6

  今天我說課的內容是義務教育課程標準實驗教科書《數學》八年級上冊第十二章12、3、1等腰三角形性質第一課時。下面,我從教材分析、教法分析、學法分析、教學過程、教學反思五個方面來匯報我對這節課的教學設想。

  一、教材分析

  1、教材的地位與作用:

  本節課內容是在學生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎上進行學習的。使學生學會分析、學會證明,在培養學生的思維能力和推理能力等方面有重要的作用。通過等腰三角形的性質反映在一個三角形中“等邊對等角”的邊角關系,并且是對軸對稱圖形性質的直觀反映(三線合一)。它所倡導的“觀察———發現———猜想———論證”的數學思想方法是今后研究數學的基本思想方法。等腰三角形的性質也是論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據,因此,本節內容在教材中處于非常重要的地位,起著承前啟后的作用。

  2、教學目標:

  知識技能:理解掌握等腰三角形的性質;運用等腰三角形的性質進行證明和計算。

  過程方法:通過實踐、觀察、證明等腰三角形的性質,發展學生合情推理能力和演繹推理能力。

  解決問題:通過觀察等腰三角形的對稱性,及運用等腰三角形的性質解決有關的問題,提高學生觀察、分析、歸納、運用知識解決問題的能力,發展應用意識。

  情感態度:通過引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解答問題的活動中獲取成功的體驗,建立學習的自信心。

  (根據教材內容的地位與作用及教學目標,因此我將把本節課的重點確定為:等腰三角形的性質的探究和應用。由于對文字語言敘述的幾何命題的證明要求嚴格且步驟繁瑣,此時八年級學生還沒有深刻的理解和熟練的掌握,因此我將把本節課的難點定為:等腰三角形性質的推理證明。)

  3、教學重點與難點:

  重點:等腰三角形的性質的探索和應用。

  難點:等腰三角形性質的推理證明。

  二、教法設計:

  教法設想:我采用探索發現法和啟發式教學法完成本節的教學,在教學中通過創設情景,設計問題,引導學生自主探索,合作交流,組織學生動手操作,觀察現象,提出猜想,推理論證等。有效地啟發學生的思考,使學生真正成為學習的主體。

  三、學法設計:

  在學生學習的過程中,我將從兩個方面指導學生學習等腰三角形:一方面老師大膽放手,讓學生去自主探究等腰三角形的性質,另一方面,在對等腰三角形性質的證明過程中,老師要巧妙引導,分散難點。這樣做既有利于活躍學生的思維,又能幫助他們探本求源,這樣也體現了以“教師為主導,學生為主體”的新課改背景下的教學原則。

  四、教學過程:

  根據制定的教學目標,圍繞重點,突破難點,我將從以下七個方面設計我的教學過程:

  1、創設情景:

  首先向同學們出示精美的建筑物圖片,并提出問題串:

  (1)什么是軸對稱圖形?這些圖片中有軸對稱圖形嗎?

  (2)里面有等腰三角形嗎?然后向學生介紹等腰三角形的定義以及邊角等相關的概念,由于學生小學就已經接觸過,所以學生很容易理解。再提出第三個問題:

  (3)a、等腰三角形是軸對稱圖形嗎?b、等腰三角形具備哪些性質呢?引出本節課的課題—我們這節課來探究等腰三角形的性質。——板書課題。

  2、動手操作,大膽猜想:

  ①拿出課下制作的等腰三角形的紙片,它是軸對稱圖形嗎?對稱軸是誰?用你手中的紙片說明你的看法?②等腰三角形沿對稱軸折疊后,你能得到哪些結論?(看誰得到的結論多)

  ③分組討論。(看哪一組氣氛最活躍,結論又對又多、)

  然后小組代表發言,交流討論結果。

  ④歸納:你能猜想得到等腰三角形具有什么性質?你能用文字語言歸納一下嗎?

  (教師引導學生進行總結歸納得出性質1,2)

  性質1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  性質2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。(簡稱“三線合一”)

  (設計意圖:由學生自己動手折紙活動,根據等腰三角形軸對稱性,大膽猜測等腰三角形的性質,培養學生的觀察分析、概括總結能力。也發展了學生的幾何直觀。教師在學生猜想的基礎上,引導學生觀察、完善、歸納出性質1和性質2。培養了學生進行合情推理的能力。)

  3、證明猜想,形成定理:

  你能證明等腰三角形的性質嗎?

  對于這種幾何命題的證明需要三大步驟:分析題設結論,畫出圖形寫出已知和求證,最后進行推理證明。這對于八年級學段的學生難度較大,為了突破難點,我決定設計以下三個階梯問題:

  (1)找出“性質1”的題設和結論,畫出的圖形,寫出已知和求證。

  (2)證明角和角相等有哪些方法?(學生可能會想到平行線的性質,全等三角形的性質)

  (3)通過折疊等腰三角形紙片,你認為本題用什么方法證明∠B=∠C,寫出證明過程。

  問題1的設計使得學生順利地將文字語言轉化為符號語言,幫助學生順利地寫出已知和求證;

  問題2提供給學生了解題思路,引導學生用舊的知識解決新的問題,體現了數學的轉化思想。找到新知識的生長點,就是三角形的全等。

  問題3的設計目的:因為輔助線的添加是本題中的又一難點,因此讓學生對折等腰三角形紙片,使兩腰重合,使學生在形成感性認識的同時,意識到要證明∠B=∠C,關鍵是將∠B和∠C放在兩三角形中去,構造全等三角形,老師再及時設問:你認為可以通過什么方法可以將∠B和∠C放在兩個三角形中去呢?再次讓學生思考,由于對知識的發生,發展有了充分的了解,學生探討以后可能會得出以下三種方法:

  (1)作頂角∠BAC的平分線,

  (2)作底邊BC的中線,

  (3)作底邊BC的高。以作頂角平分線為例,讓一生板演,其他學生在練習本上寫出完整的證明過程。以達到規范學生的解題步驟的目的。其他兩種證法,讓學生課下證明。這樣,學生就證明了性質1,同時由于△BAD≌△CAD,也很容易得出等腰三角形的頂角平分線平分底邊,并垂直于底邊。用類似的方法還可以證明等腰三角形底邊的中線平分頂角且垂直于底邊,等腰三角形底邊上的高平分頂角且平分底邊,這也就證明了性質2。

  (設計意圖:教師精心設計問題串引導學生通過動手,觀察,猜想,歸納,猜測出等腰三角形的性質,發展了學生的合情推理能力,同時也讓學生明確,結論的正確性需要通過演繹推理加以證明。這樣把對性質的證明作為探索活動的自然延續和必要發展,使學生感受到合情推理與演繹推理是相輔相成的兩種形式,同時感受到探索證明同一個問題的不同思路和方法,發展了學生思維的廣闊性和靈活性。)

  (4)你能用符號語言表示性質1和性質2嗎?

  (設計意圖:把文字語言轉換為符號語言,讓學生建立符號意識,這有助于學生理解符號的使用是數學表達和進行數學思考的重要形式。——

  4、性質的應用:

  例一:在等腰△ABC中,AB=AC,∠A=50°,則∠B=_____,∠C=______

  變式練習題:

  1、在等腰中,∠A=50°,則∠B=___,∠C=___

  2、在等腰中,∠A=100°,則∠B=___,∠C=___

  設計意圖:此例題的重點是運用等腰三角形“等邊對等角”這一性質和三角形的內角和,突出頂角和底角的關系,如

  例一,學生就比較容易得出正確結果,對變式練習題(1)、(2)學生得出正確的結果就有困難,容易漏解,讓學生把變式題與例一進行比較兩題的條件,讓學生認識等腰三角形在沒有明確頂角和底角時,應分類討論:變式1(如圖)①當∠A=50°為頂角時,則∠B=65°,∠C=65°。②當∠A=50°為底角時,則∠B=50°,∠C=80°;或∠B=80°,∠C=50°。變式2①當∠A=100°為頂角時,則∠B=40°,∠C=40°。②當∠A=100°為底角時,則△ABC不存在。由此得出,等腰三角形中已知一個角可以求出另兩個角(頂角和底角的取值范圍:0°<頂角<180°,0°<底角<90°)。

  例二:在等腰△ABC中,AB=5,AC=6,則△ABC的周長=_______

  變式練習題:在等腰△ABC中,AB=5,AC=12,則△ABC的周長=______

  (設計意圖:此例題的重點是運用等腰三角形的定義,以及等腰三角形腰和底邊的關系,并強調在沒有明確腰和底邊時,應該分兩種情況討論。如例二,①當AB=5為腰時,則三邊為5,5,6;②當AB=5為底時,則三邊為6,6,5。變式練習題①:當AB=5為腰時,三邊為5,5,12;②當AB=5為底時,三邊為12,12,5。此時同學們就會毫不猶豫地得出三角形的周長,這時老師就可以提出質疑,讓同學們之間討論(學生容易忽視三角形三邊關系,看能否構成一個三角形)。

  例三、如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數。

  (例3是課本例題,有一定難度,讓學生展開討論,老師參與討論,認真聽取學生分析,引導學生找出角之間的關系,利用方程的思想解決問題,并書寫出解答過程。本題運用了等腰三角形性質1,并體現了利用方程解決幾何問題的思想。)

  例四:

  在△ABC中,點D在BC上,給出4個條件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2個條件作題設,另外2個條件作結論,你能寫出一個正確的命題嗎?看誰寫得多。(分組討論搶答)

  5、鞏固提高

  (1)等腰三角形一腰上的高與另一腰的夾角為30°,則這個等腰三角形頂角為度。

  (2)如圖,在△ABC中,AB=AC,D是BC邊上的中點,∠B=30。求∠1和∠ADC的度數。

  (3)課本本章數學活動三“等腰三角形中相等的線段”

  設計意圖:

  (1)題運用等腰三角形的性質1及等腰三角形一腰上的高的畫法,由于題目沒有圖,要用到分類討論的數學思想,學生能正確畫出銳角和鈍角三角形兩種圖形就容易得出結果,也滲透了一題多解。

  (2)題同時運用了等腰三角形的性質1,性質2,還有三角形的內角和這三個知識點,培養學生對于知識的靈活運用,“討論”是本章的數學活動3“等腰三角形中相等的線段”。與等腰性質的證明思路類似,先通過等腰三角形的對稱性猜想距離是相等的,然后通過做輔助線構造全等三角形來進行嚴密的推理。更加說明了合情推理和演繹推理是相輔相成的。

  6、課堂小結:不僅僅說你收獲了什么,而是讓學生從知識上,思想方法上,以及輔助線的做法上等方面具體總結一下。然后教師結合學生的回答完善本節知識結構。學生對于自己的疑惑提出小組內交流,還沒解決則全班交流。

  7、布置作業:

  P55練習1、2、3題

  P56習題1、4、6,(選做7,8題)

14.3等腰三角形 篇7

  2.5 等腰三角形的軸對稱性(2)

  教學目標

  1.掌握等腰三角形的判定定理.

  2.知道等邊三角形的性質以及等邊三角形的判定定理.

  3.經歷折紙、畫圖、觀察、推理等操作活動的合理性進行證明的過程,不斷感受合情推理和演繹推理都是人們正確認識事物的重要途徑.

  4.會用“因為……所以……理由是……”或“根據……因為……所以……”等方式來進行說理,進一步發展有條理地思考和表達,提高演繹推理的能力.

  教學重點

  熟練地掌握等腰三角形的判定定理.

  教學難點

  正確熟練地運用定理解決問題及簡潔地邏輯推理.

  教學過程(教師活動)

  學生活動

  設計思路

  前面我們學習了等腰三角形的軸對稱性,說說你對等腰三角形的認識.

  本節課我們將繼續學習等腰三角形的軸對稱性.

  一、創設情境

  如圖所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂沒了,只留下一條底邊bc和一個底角∠c.請同學們想一想,有沒有辦法把原來的等腰三角形abc重新畫出來?大家試試看.

  1.學生觀察思考,提出猜想.

  2.小組交流討論.

  一方面回憶等邊對等角及其研究方法,為學生研究等角對等邊提供研究的方法,另一方面通過創設情境,自然地引入課題.

  二、探索發現一

  請同學們分別拿出一張半透明紙,做一個實驗,按以下方法進行操作:

  (1)在半透明紙上畫一條長為6cm的線段bc.

  (2)以bc為始邊,分別以點b和點c為頂點,在bc的同側用量角器畫兩個相等的銳角,兩角終邊的交點為a.

  (3)用刻度尺找出bc的中點d,連接ad,然后沿ad對折.

  問題1:ab與ac有什么數量關系?

  問題2:請用語言敘述你的發現.

  1.根據實驗要求進行操作.

  2.畫出圖形、觀察猜想.

  3.小組合作交流、展示學習成果.

  演示折疊過程為進一步的說理和推理提供思路.

  通過動手操作、演示、觀察、猜想、體驗、感悟等學習活動,獲得知識為今后學生進行探索活動積累數學活動經驗.

  三、分析證明

  思考:我們利用了折疊、度量得到了上述結論,那么如何證明這些結論呢?

  問題3:已知如圖,在△abc中,

  ∠b=∠c.求證:ab=ac.

  引導學分析問題,綜合證明.

  思考:你還有不同的證明方法嗎?

  問題4:“等邊對等角”與“等角對等邊”, 它們有什么區別和聯系?

  思考——討論——展示.

  1.學生獨立完成證明過程的基礎上進行小組交流.

  2.班級展示:小組代表展示學習成果.

  在實驗的基礎上獲得問題解決的思路,在合情推理的基礎上讓學生經歷演繹推理的過程,培養學生的邏輯思維能力.

  通過“你有不同的證明方法嗎”的問題,讓學生學會質疑,學會從不同的角度思考問題,培養學生的發散性思維,激發探究問題的欲望和興趣,通過對問題4的思考讓學生加深對性質與判定的理解.

  四、探索發現二

  問題5:什么是等邊三角形?等邊三角形與等腰三角形有什么區別和聯系?

  問題6:等邊三角形有什么性質?

  問題7:一個三角形滿足什么條件就是等邊三角形了?為什么?

  1.學生閱讀教材,進行自主學習.

  2.小組討論交流.

  3.展示學習成果:等邊三角形的概念、等邊三角形的性質、

  等邊三角形的判定.

  培養學生閱讀教材的學習習慣和自主學習能力.

  引導學生經歷合情推理和演繹推理的過程,感受合情推理和演繹推理都是人們認識事物的重要途徑.

  五、學以致用

  請同學完成課本p63-64練習第1、2、3題.

  學生獨立思考、小組討論、展示交流、相互評價.

  引導學生學會分析問題和解決問題,理解分析和綜合之間的關系,培養學生分析問題和解決問題的能力.

  鞏固學習成果,加強知識的理解和方法的應用,培養分析問題、解決問題的能力.

  六、歸納小結

  1.這節課你有怎樣的收獲?還有哪些困惑呢?

  2.布置作業:

  課本p67習題2.5第7、8、10題.

  1.學生以小組為單位歸納本節課所學習的知識、方法.

  2.展示交流,相互補充,建立知識體系.

  3.討論困惑問題.

  4.完成作業.

  引導學生進行知識歸納整理,學會學習,培養學生發現問題、提出問題的學習能力.

14.3等腰三角形 篇8

  等腰三角形的性質 

  幾何第二冊第三章,3.12第2——4頁

  教學目標 

  (1)知識目標:1、掌握等腰三角形的兩底角相等,底邊上的高、

  中線及頂角平分線三線合一的性質,并能運用

  它們進行有關的論證和計算。

  2、理解等腰三角形和等邊三角形性質定理之間

  的聯系。

  (2)能力目標:1、定理的引入培養學生對命題的抽象概括能力,

  加強發散思維的訓練。

  2、定理的證明培養大膽創新、敢于求異、勇于

  探索的精神和能力,形成良好的思維品質。

  3、定理的應用,培養學生進行獨立思考,提高獨

  立解決問題的能力。

  (3)情感目標:在教學過程 中,引導學生進行規律的再發現,激發

  學生的審美情感,與現實生活有關的實際問題使

  學生認識到數學對于外部世界的完善與和諧,使

  他們有效地獲取真知,發展理性。

  教學重點 等腰三角形的性質定理及其證明。

  教學難點  用文字語言敘述的幾何命題的證明及輔助線的添加。

  達標進程

  教學內容

  教師活動

  學生活動

  一、 前置診斷,開辟道路

  1、什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。

  首先教師提問了解前置知識掌握情況。

  動腦思考、口答。

  二、 構設懸念,創設情境

  1、一般三角形有哪些性質?

  2、等腰三角形除具有一般三角形的性質外,還有那些特殊性質?

  把問題作為教學的出發點,激發學生的學習興趣。

  問題2給學生留下懸念。

  三、 目標導向,自然引入

  本節課我們一起研究——等腰三角形的性質。

  板書課題

  了解本節課的學習內容。

  四、 設問質疑,探究嘗試

  請同學們拿出準備好的等腰三角形,與教師一起按照要求,把兩腰疊在一起。

  [問題]通過觀察,你發現了什么結論?

  [結論]等腰三角形的兩個底角相等。

  板書學生發現的結論。

  [問題]可由學生從多種途徑思考,縱橫聯想所學知識方法,為命題的證明打下基礎。

  [辨疑]由觀察發現的命題不一定是真命題,需要證明,怎樣證明?

  [問題]1、此命題的題設、結論分別是什么?

  2、怎樣寫出已知、求證?

  3、怎樣證明?

  [電腦演示1]

  [投影學生證明過程,并由其講述]

  從而引出定理 等腰三角形的兩個底角相等(簡寫成“等邊對等角”)

  通過電腦演示,引導學生全面觀察,聯想,突破引輔助線的難關,并向學生滲透轉化的數學思想。

  引出學生探究心理,迅速集中注意力,使其帶著濃厚的興趣開始積極探索思考。

  繼續觀察圖形

  [問題]1、指出全等三角形中還有哪些

  對應邊、對應角相等?

  2、等腰三角形的頂角的平分線又有什么性質?

  設問、質疑

  小組討論,歸納總結,培養學生概括數學材料的能力。

  教學內容

  教師活動

  學生活動

  [辨疑]一般三角形是否具有這一性質呢?

  [電腦演示2]

  從而引出推論1 等腰三角形頂角的平分線平分底邊,并且垂直于底邊.

  “三線合一”性質 等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。

  [填空]根據等腰三角形性質定理的推論,在△ABC中

  (1)∵AB=AC,AD⊥BC,

  ∴∠_=∠_,_=_;

  (2)∵AB=AC,AD是中線,

  ∴∠_=∠_,_⊥_;

  (3)∵AB=AC,AD是角平分線,

  ∴_⊥_,_=_。

  通過電腦演示,引出推論1,并引入[填空]、強調推論1的運用方法。

  電腦演示給學生對推掄1留下深刻印象,并通過[填空]了解推論1的運用方法。

  五、 變式訓練,鞏固提高

  達標練習一

  A組:根據等腰三角的形性質定理

  (1)等腰直角三角形的每一個銳角都等于多少度?

  (2)若等腰三角形的頂角為40°,

  則它的底角為多少度?

  (3)若等腰三角形的一個底角為 40°,則它的頂角為多少度?

  B組:根據等腰三角形的性質定理

  (1)若等腰三角形的一個內角為 40°,則它的其余各角為多少度?

  (2) 若等腰三角形的一個內角為120°,則它的其余各角為多少度?

  (3)等邊三角形的三個內角有什么關系?各等于多少度?

  從而引出推論2 等邊三角形的各角都相等,并且每一個角都等于60°.

  題目設計遵循由易到難的原則,引導學生拾階而上。溝通等腰三角形的性質定理和三角形內角和定理的聯系,并引出推論2。

  A組口答練習

  B組討論后回答。

  掌握等腰三角形性質定理的應用,訓練學生的類比思維,讓學生獲得從問題中探索共同的屬性和規律的思維能力。

  教學內容

  教師活動

  學生活動

  達標練習二

  A組:等腰三角形斜邊上的高把直角分成兩個角,求這兩個角的度數。

  B組:已知:如圖,房屋的頂角 ∠BAC=100°。求頂架上∠B、∠C、

  ∠BAD、∠CAD的度數。

  理論聯系實際,

  充分體現數學解決實際問題的作用,培養學生的應用意識,提高數學修養。

  A組口答

  B組獨立解答.

  加深理解定理及推論1,能初步靈活地運用它們進行計算和論證。

  布置作業 :1、看書:P1——P3

  2、課本P5 想一想

  教案設計說明

  本節課是在學生掌握了一般三角形基礎知識和初步推論證明的基礎上進行學習的,擔負著訓練學生會分析證明思路的任務,等腰三角形兩底角相等的性質是今后論證兩角相等的依據之一,等腰三角形底邊上的三條主要線段重合的性質是今后論證兩條線段相等、兩個角相等及兩條直線垂直的重要依據。因此設計時,我分別從幾個方面作了精心策劃:

  1、創設豐富的舊知環境,有利于幫助學生找準新舊知識的連接點,喚起與形成新知相關的舊知,從而使學生的原認知結構對新知的學習具有某種“召喚力”。

  2、提供可探索性的問題,合理的設計實驗過程,創造出良好的問題情境,不斷地引導學生觀察、實驗、思考、探索,使學生感到自己就象科學家那樣提出問題、分析問題、解決問題,去發現規律,證實結論。發揮學生學習的主觀能動性,培養學生的探索能力、科學的研究方法、實事求是的態度。

  3、在鞏固應用時,訓練題組的設計具有階梯性,加強了變式訓練,便于及時反饋。實際應用充分體現了數學解決實際問題的作用,培養學生的應用意識,提高數學修養。

  4、利用直觀教具及電化教學手段,創設了豐富的課堂教學環境,觸發學生求知心向的生成,自覺地努力調集思維和舊知紛紛指向新知,成為學習活動的“催化劑”、“助推器”。

  威海市經濟技術開發區皇冠中學 叢燕燕

  2000年4月

  等腰三角形的性質

  教 案

  威海市經濟技術開發區皇冠中學

  叢燕燕

  二O O O年四月

  ------------------------------------------------------------

  相關專題: 初中數學 

  專題信息:

  九年級(上)第一章(證明二)單元測試卷1(2004-10-12 12:48:49)[1300]

14.3等腰三角形 篇9

  3章等腰三角形教案

  (一)、溫故知新,激發情趣:

  1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?

  2、指出等腰三角形的腰、底邊、頂角、底角。

  (首先教師提問了解前置知識掌握情況,學生動腦思考、口答。)

  (二) 、構設懸念,創設情境:

  3、一般三角形有哪些特征? (三條邊、三個內角、高、中線、角平分線)

  4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?

  (把問題3作為教學的出發點,激發學生的學習興趣。問題4給學生留下懸念。)

  (三)、目標導向,自然引入:

  本節課我們一起研究——9.3 等腰三角形   

  (板書課題) 9.3 等腰三角形(了解本節課的學習內容)

  (四)、設問質疑,探究嘗試:

  結合問題4請同學們拿出準備好的不同規格的等腰三角形,與教師一起演示(模型)等腰三角形是軸對稱圖形的實驗,引導學生觀察實驗現象。

  [問題]通過觀察,你發現了什么結論?

  (讓學生由實驗或演示指出各自的發現,并加以引導,用規范的數學語言進行逐條歸納,最后得出等腰三角形的特征)

  [結論]等腰三角形的兩個底角相等。     

  (板書學生發現的結論)

  等腰三角形特征1:等腰三角形的兩個底角相等

  在△ ABC中,∵AB=AC( )

  ∴∠B=∠C( )

  [方法]可由學生從多種途徑思考,縱橫聯想所學知識方法,為命題的證明打下基礎。

  例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數。

  〔學生思考,教師分析,板書〕

  練習思考:課本P84 練習2(等腰三角形的底角可以是直角或鈍角嗎?為什么?)

  〔繼續觀察實驗紙片圖形〕(以下內容學生可能在前面實驗中就會提出)

  [問題]紙片中的等腰三角形的對稱軸可能是我們以前學習過的什么線?

  (通過設問、質疑、小組討論,歸納總結,培養學生概括數學問題的能力)

  [引導學生觀察]折痕AD是等腰三角形的對稱軸,AD可能還是等腰三角形的什么線?

  [學生發現]AD是等腰三角形的頂角平分線、底邊中線、底邊上的高.

  [結論]等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合.簡稱為:“三線合一”。

  等腰三角形特征2:

  等腰三角形的頂角平分線、底邊上的中線和高線互相重合(三線合一)

  (出示小黑板)

  [填空]根據等腰三角形特征的推論,在△ABC中

  (1)∵AB=AC,AD⊥BC,

  ∴∠_=∠_,_=_;

  (2)∵AB=AC,AD是中線,

  ∴∠_=∠_,_⊥_;

  (3)∵AB=AC,AD是角平分線,

  ∴_⊥_,_=_

  通過直觀模具演示,引出推論2,并出示小黑板[填空]、強調“三線合一”的運用方法。使學生留下深刻印象,并通過[填空]了解三線合一的運用方法。

  強調“三線合一”特征中的三線段前的定語的重要性,可讓學生實際畫圖驗證。

  (五)、啟發誘導,初步運用:

  例2:如圖,在△ABC中,AB=AC,D是BC邊上的中點,

  ∠B=30°,求∠1和∠ADC的度數。

  課堂練習:

  (1)P85練習3

  (2)例3已知:如圖,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

  (這是一道幾何計算題,要使學生加深對本課內容的應用,引導學生寫出解題過程)

  (六)、歸納小結,強化思想:

  (1)敘述等腰三角形的特征及其應用;

  (2)利用等腰三角形的特征可證明:兩角相等,兩線段相等,兩直線互相垂直。

  (3) 聯想方法要經常運用,對今后解題大有裨益。

  (七)、布置作業 ,引導預習:

  P86 習題9.3   1、3、4   預習課本:P85 等腰三角形

  課后思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

14.3等腰三角形 篇10

  一、教材分析

  1、教材的地位和作用

  《等腰三角形的性質》是“華東師大版八年級數學(上)”第十三章第三節第一課時的內容。本節先課利用軸對稱的知識來探索發現等腰三角形的有關性質,然后利用全等三角形的知識證明這些性質。學習過程中運用的“操作——觀察——發現——猜想——論證——應用”的方法是探究數學知識的常用方法。同時“等邊對等角”和“三線合一”的性質是又是接下來學習等邊三角形知識以及等腰三角形的判定的基礎知識,更是今后論證兩個角相等、兩條線段相等、兩條線垂直的重要依據。起著承前啟后的作用。

  2、教材的教學目標:

  ①知識與技能目標:

  掌握等腰三角形的有關概念和相關性質,能運用它們解決等腰三角形的邊、角計算問題。

  ②過程與方法目標:

  通過實踐、觀察、同組間學生以及小組與小組間的合作與交流,培養學生多角度思考問題和分析問題、解決問題的能力。③情感與態度目標:

  通過合作交流培養學生團結協作、樂于助人的品質。

  3、教學重點與難點:

  重點:等腰三角形“等邊對等角”和“三線合一”性質的探究和應用。

  難點:等腰三角形性質的推理證明。

  二、學情分析

  八年級上期學生學習幾何知識有了初步的抽象思維感知,有一定的形象直觀思維能力,能進行簡單的推理論證。但其運用數學思維的廣闊性、緊密性、靈活性比較欠缺,在學習過程中要加強引導和培養。

  三、教法與手段

  根據本課內容特點和初二學生思維活動的特點,在教學中我將采用“操作——觀察——發現——猜想——論證——應用”的教學法,利用分組活動,組間合作與交流從而達到對“等邊對等角”和“三線合一”的性質的探究的層層深入。另外,我還將采用多媒體輔助教學,呈現更直觀的形象,激發學生的'積極性、主動性,增大課堂容量,提高教學效率。

  四、學法設計

  《數學課程標準》指出:數學的抽象結論,應以觀察、實驗為前提,幾何教學應該把實驗方法與邏輯分析結合起來。結合這一理念在探究等腰三角形的性質時我將采用學生實驗操作、小組合作、觀察發現、師生互動、學生互動的學習方式。

  五、教學過程設計

  (一)創設情景、導入新課

  ①復習提問:向同學們出示幾張精美的建筑物圖片,引入等腰三角形。

  (設計意圖:感知數學知識和實際生活聯系緊密,培養觀察力,感受身邊處處有數學。)

  ②等腰三角形的相關概念:

  1定義:兩條邊相等的三角形叫做等腰三角形。

  邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。

  角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。

  ③設問:等腰三角形具有哪些特殊的性質呢?(引入新課)

  (二)實驗探索、得出猜想:

  ①動動手:讓同學們用剪刀在長方形紙片上剪下等腰三角形,每個人的等腰三角形的大小

  和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發現什么現象?“比一比”看誰思考的結論最多。

  (設計意圖:以六人小組為單位學生親自操作實驗,填寫導學案。通過組內合作與交流,集

  思廣益讓學生用自己的語言在小組內表達自己的發現。)

  ②得出猜想:可讓學生有充分的時間觀察、思考、交流、可能得到的結論:

  (1)等腰三角形是軸對稱圖形

  (2)∠B=∠C

  (3)BD=CD,AD為底邊上的中線

  (4)∠ADB=∠ADC=90°,AD為底邊上的高線

  (5)∠BAD=∠CAD,AD為頂角平分線

  (設計意圖:以小組為單位派代表發言即組間交流補充,引導歸納提煉,使不同層次的學生都能感受新知,建立新的知識體系,為進一步探索做準備。)

  (三)證明猜想、形成定理:

  1、結論(2)∠B=∠C你能用一個命題表達這一結論并論證它的正確性嗎?

  (1)語言總結:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  (2)怎樣論證這個一命題的正確性呢?

  ①為證∠B=∠C,需要添加輔助線構造以∠B、∠C為元素的兩個全等三角形。

  ②探討添加輔助線的方法,讓學生選擇一種輔助線并完成證明過程。

  設計說明:以上過程分小組討論,在探索過程中鼓勵學生尋求不同(作高、中線、角平分線)的方法來解決問題。

  利用展臺展示各小組不同的證明方法,讓學生的個性得到充分的展示。

  (3)得出等腰三角形的性質1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)

  2、結論(3)(4)(5)你也能用一個命題表達這一結論并論證它的正確性嗎?

  (1)結合性質一的證明鼓勵學生證明總結的命題

  (2)得出等腰三角形的性質2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。

  (3)“三線合一”的幾何表達:

  如圖,在△ABC中,AB=AC,點D在BC上

  ①(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD

  ②(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說成“知一求二!”)

  ③(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD

  2設計意圖:充分調動各組學生的積極性、主動性,采用各小組競爭的方式,參照性質1的探索完成本性質的探索與證明。通過本性質的探索讓不同的學生有不同的收獲,讓每個學生的能力都得到提升。

  (四)實例剖析、鞏固新知:

  1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數

  2、例2:在△ABC中,AB=AC,點D是BC的中點,∠B=30

  (1)求∠ADC的度數(2)求∠BAD的度數

  此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質的綜合運用,以及怎么書寫解答題,強調“三線合一”的表達過程。

  解:(1)∵AB=AC,D是BC邊上的中點(已知)

  ∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)

  (2)∵∠BAD+∠B+∠ADB=180°(三角形內角和等于180°)∴∠BAD=180°—∠B—∠ADB

  =180°—30°—90°=60°

  (設計意圖:設計例題1鞏固等腰三角形“等邊對等角的性質”的理解,讓學生學以致用,獲得成就感,增強學習數學的自信心。而例題2主要是體會等腰三角形“三線合一”性質的運用。這兩個例題作為課本上的例題是基礎新知的鞏固,要求能正確的寫出解題過程。)

  (五)課堂練習、總結所得:

  1、先完成課后81頁練習1、2、3、4題

  (設計意圖:作為課本上的練習題的完成達到檢測學生對本節課知識的掌握情況,從而幫助學生查漏補缺,鞏固基礎知識。)

  2、學以致用:

  (設計意圖:讓書生體會數學知識和實際生活的緊密聯系)

  如圖,是西安半坡博物館屋頂的截面圖,已經知道它的兩邊AB和AC是相等的、建筑工人師傅對這個建筑物做出了兩個判斷:

  ①工人師傅在測量了∠B為37°以后,并沒有測量∠C,就說∠C的度數也是37°。②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認為木樁是垂直橫梁的。

  請同學們想想,工人師傅的說法對嗎?請說明理由。

  設計意圖:運用所學知識解決實際問題,引導學生將實際問題轉化為數學問題,進一步加深學生對等腰三角形性質的理解和運用;從數學回到實際生活,自然地滲透數學作用于實際問題的思想。

  3、課堂小結

  今天我們學習了什么?你覺得在等腰三角形的學習中要注意哪些問題?設計意圖:幫助學生回顧,歸納,鞏固所學知識。A(六)作業布置、深化提高:

  1、課本P84:習題13、31、2、3;(必做題)

  2、(思維發散)選做題

  已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2

  求證:∠ACE=∠BC

14.3等腰三角形 篇11

  知識結構

  重點與難點分析:

  本節內容的重點是及其推論。等腰三角形兩底角相等(等邊對等角)是證明同一三角形中兩角相等的重要依據;而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質也是證明兩線段相等,兩個角相等及兩直線互相垂直的重要依據。為證明線段相等,角相等或垂直平提供了方法,在選擇時注意靈活運用。

  本節內容的難點是文字題的證明。對文字題的證明,首先分析出命題的題設和結論,結合題意畫出草圖形,然后根據圖形寫出已知、求證,做到不重不漏,從而轉化為一般證明題。這些環節是學生感到困難的。

  教法建議:

  數學教學的核心是學生的“再創造”.根據這一指導思想,本節課教學可通過精心設置的一個個問題鏈,激發學生的求知欲,最終在老師的指導下發現問題、解決問題.為了充分調動學生的積極性,使學生變被動學習為主動學習,本課教學擬用啟發式問題教學法.具體說明如下:

  (1)發現問題

  本節課開始,先投影顯示圖形及問題,讓學生觀察并發現結論。提出問題讓學生思考,創設問題情境,激發學生學習的欲望和要求.

  (2)解決問題

  對所得到的結論通過教師啟發,讓學生完成證明.指導學生歸納總結,從而順其自然得到本節課的一個定理及其兩個推論. 多讓學生親自實踐,參與探索發現,領略知識形成過程,這是課堂教學的基本思想和教學理念.

  (3)加深理解

  學生學習的過程是對知識的消化和理解的過程,通過例題的解決,提高和完善對定理及其推論理解。這一過程采用講練結合、適時點撥的教學方法,把學生的注意力緊緊吸引在解決問題身上,讓學生的思維活動在老師的引導下層層展開,讓學生大膽參與課堂教學,使他們“聽”有所“思”、“練”有所“獲”,使傳授知識與培養能力融為一體。一.教學目標 

  1.掌握定理的證明及這個定理的兩個推論;

  2.會運用證明線段相等;

  3.使學生掌握一般文字題的證明;

  4.通過文字題的證明,提高學生幾何三種語言的互譯能力;

  5.逐步培養學生邏輯思維能力及分析實際問題解決問題的能力;

  6.滲透對稱的數學思想,培養學生數學應用的觀點;

  二.教學重點:及其推論

  三.教學難點 :文字題的證明

  四.教學用具:直尺,微機

  五.教學方法:問題探究法

  六.教學過程 

  1、  性質定理的發現與證明

  (1)投影顯示:

  一般學生都能發現等腰三角形的兩個底角相等(若有其它發現也要給予肯定),

  (2)提醒學生:憑觀察作出的判斷準確嗎?怎樣證明你的判斷?

  師生討論后,確定用全等三角形證明,學生親自動手作出證明.證明略.

  教師指出:定理提示了三角形邊與角的轉化關系,由兩邊相等轉化為兩角相等,這是今后證明兩角相等常用的依據,其功效不亞于利用全等三角形證明兩角相等.

  2、推論1的發現與證明

  投影顯示:

  由學生觀察發現,等腰三角形頂角平分線平分底邊并且垂直于底邊.

  啟發學生自己歸納得出:頂角平分線、底邊上的中線、底邊上的高互相重合.

  學生口述證明過程.

  教師指出:等腰三角形的頂角的平分線,底邊上的中線、底邊上的高這“三線合一”的性質有多重功能,可以證明兩線段相等,兩個角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。

  3、推論2的發現與證明

  投影顯示:

  一般學生都能發現等邊三角形的三個內角都為 .然后啟發學生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”.

  4、定理及其推論的應用

  解:(1) (2)另外兩內角分別為: (3)

  小結:滲透分類思想,培養思維的嚴密性.

  例2、已知:如圖,點D、E在△ABC的邊BC上,AB=AC,AD=AE

  求證:BD=CE

  證明:作AF⊥BC,,垂足為F,則AF⊥DE

  ∵AB=AC,AD=AE(已知)

  AF⊥BC,AF⊥DE(輔助線作法)

  ∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)

  ∴BD=CE

  強調說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時,有時作頂角的平分線,有時作底邊中線,有時作底邊的高,有時作哪條線都可以,有時卻不能,還要根據實際情況來定.

  例3、已知:如圖,D是等邊△ABC內一點,DB=DA,BP=AB, DBP= DBC

  求證: P=

  證明:連結OC

  在△BPD和△BCD中

  在△ADC和△BCD中

  因此, P=

  例4 求證:等腰三角形兩腰上中線的交點到底邊兩端點的距離相等

  已知:如圖,AB=AC,BD、CE分別為AC邊、AB邊的中線,它們相交于F點

  求證:BF=CF

  證明:∵BD、CE是△ABC的兩條中線,AB=AC

  ∴AD=AE,BE=CD

  在△ABD和△ACE中

  ∴△ABD≌△ACE

  ∴ 1= 2

  在△BEF和△CED中

  ∴△BEF≌△CED

  ∴BF=FC

  設想:例1到例4,由易到難地安排學生對新授內容的練習和鞏固.在以上教學中,特別注意“一般解題方法”的運用.

  在四個例題的教學中,充分發揮學生與學生之間的互補性,從而提高認識,完善認知結構,使課堂成為學生發揮想象力和創造性的“學堂”

  5、反饋練習:

  出示圖形及題目:

  將實際問題數學化,培養學生應用能力。

  6、課堂小結:

  教師引導學生小結

  (1)、

  (2)、等邊三角形的性質

  (3)、文字證明題的書寫步驟

  7、布置作業 :

  a、  書面作業 P96#1、2

  b、  上交作業 P96#4、7、8

  c、  思考題:

  已知:如圖:在△ABC中,AB=AC,E在CA的延長線上,∠AEF=∠AFE.

  求證:EF⊥BC

  證明 : 作BC邊上的高AM,M為垂足

  ∵AM⊥BC

  ∴∠BAM=∠CAM

  又∵∠BAC為△AEF的外角

  ∴∠BAC =∠E+∠EFA

  即∠BAM+∠CAM=∠E=∠EFA

  ∵∠AEF=∠AFE

  ∴∠CAM=∠E

  ∴EF∥AM

  ∵AM⊥BC

  ∴EF⊥BC

  七.板書設計 

14.3等腰三角形 篇12

  一、說教材

  1、教材的地位與作用

  等腰三角形是在學習了軸對稱之后編排的,是軸對稱知識的延伸和應用。等腰三角形的性質及判定是探究線段相等、角相等及兩條直線互相垂直的重要工具,在教材中起著承上啟下的作用。

  2、教學重點和難點

  本著新課程標準,在吃透教材基礎上,我把探索等腰三角形的性質定為本節課的重點,通過創設問題和解決問題來突出重點。把等腰三角形性質的建立定為本課的難點,通過折紙實驗和小組合作探究來突破難點。

  二、說教學目標

  1、學情分析

  我所教的學生,從認知的特點來看,好奇愛問,求知欲強,想象力豐富;并已初步具有對數學問題進行合作探究的能力。

  2、三維目標

  根據教材結構和內容分析,考慮到學生已有的認知結構、心理特征 ,我制定如下目標:

  知識與技能目標:

  了解等腰三角形的概念,探索并掌握等腰三角形的性質,并會進行有關的論證和計算,以及運用所學的知識去解決實際問題。

  過程與方法目標:

  通過對性質的探究活動和例題的分析,培養學生多角度思考問題的習慣,提高學生分析問題和解決問題的能力;使學生進一步了解發現真理的方法(探究-猜想-歸納-論證)。

  情感態度與價值觀目標:

  通過對等腰三角形的觀察、試驗、歸納,體驗數學活動充滿著探索性和創造性,數學就在我們身邊。在操作活動中,培養學生的合作精神,在獨立思考的同時能夠認同他人. 感受合作交流帶來的成功感,樹立自信心.

  三、說教法與學法

  1、教法

  根據教材分析和目標分析,我確定本課主要的教法為探究發現法。采用“問題情境—探索交流—猜想驗證——建立模型”的模式安排教學,并在各個環節進行分層施教。

  2、學法

  我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中我特別重視學法的指導。本課采用小組合作的學習方式,讓學生遵循“觀察——猜想——歸納——驗證——反饋——實踐”的主線進行學習。

  四、說教學流程

  《數學課程標準》強調,教師應發揚教學民主,成為學生數學學習活動的組織者、引導者、合作者。因此本節課我分以下六個環節組織教學。

  (一)創設情境,激發興趣。

  1、多媒體展示房屋人字架、艾佛爾鐵塔、龍塔、香港中國銀行大廈的圖片,問:你認識圖片中的建筑物嗎?圖片中存在哪些幾何圖形? (等腰三角形、四邊形、梯形)

  2、四幅圖中都有哪種幾何圖形?(等腰三角形)

  (通過實例的電腦展示,喚起學生的好奇心,提出問題,引導學生進入新知識的學習,創造一種探索的情景。在學習中,只有調動學生的非智力因素,特別是內在動機,才能使他們產生強烈的求知欲和以飽滿的熱情來學習新知識。)

  (二) 觀察實物,形成概念。

  活動:學生通過觀察自帶的等腰三角形紙片認識等腰三角形的有關概念。

  接著,我利用電腦演示等腰三角形定義的數學語言表達方式。

  (讓學生歸納定義增強學生的成就感,給出數學語言的表達,是為了培養學生文字語言、圖形語言和符號語言的轉化能力.同時也能培養學生正向思維和逆向思維的能力。)

14.3等腰三角形 篇13

  (一)、溫故知新,激發情趣:

  1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?

  2、指出等腰三角形的腰、底邊、頂角、底角。

  (首先教師提問了解前置知識掌握情況,學生動腦思考、口答。)

  (二) 、構設懸念,創設情境:

  3、一般三角形有哪些特征? (三條邊、三個內角、高、中線、角平分線)

  4、等腰三角形除具有一般三角形的特征外,還有那些特殊特征?

  (把問題3作為教學的出發點,激發學生的學習興趣。問題4給學生留下懸念。)

  (三)、目標導向,自然引入:

  本節課我們一起研究——9.3 等腰三角形   

  (板書課題) 9.3 等腰三角形(了解本節課的學習內容)

  (四)、設問質疑,探究嘗試:

  結合問題4請同學們拿出準備好的不同規格的等腰三角形,與教師一起演示(模型)等腰三角形是軸對稱圖形的實驗,引導學生觀察實驗現象。

  [問題]通過觀察,你發現了什么結論?

  (讓學生由實驗或演示指出各自的發現,并加以引導,用規范的數學語言進行逐條歸納,最后得出等腰三角形的特征)

  [結論]等腰三角形的兩個底角相等。     

  (板書學生發現的結論)

  等腰三角形特征1:等腰三角形的兩個底角相等

  在△ ABC中,∵AB=AC( )

  ∴∠B=∠C( )

  [方法]可由學生從多種途徑思考,縱橫聯想所學知識方法,為命題的證明打下基礎。

  例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數。

  〔學生思考,教師分析,板書〕

  練習思考:課本P84 練習2(等腰三角形的底角可以是直角或鈍角嗎?為什么?)

  〔繼續觀察實驗紙片圖形〕(以下內容學生可能在前面實驗中就會提出)

  [問題]紙片中的等腰三角形的對稱軸可能是我們以前學習過的什么線?

  (通過設問、質疑、小組討論,歸納總結,培養學生概括數學問題的能力)

  [引導學生觀察]折痕AD是等腰三角形的對稱軸,AD可能還是等腰三角形的什么線?

  [學生發現]AD是等腰三角形的頂角平分線、底邊中線、底邊上的高.

  [結論]等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合.簡稱為:“三線合一”。

  等腰三角形特征2:

  等腰三角形的頂角平分線、底邊上的中線和高線互相重合(三線合一)

  (出示小黑板)

  [填空]根據等腰三角形特征的推論,在△ABC中

  (1)∵AB=AC,AD⊥BC,

  ∴∠_=∠_,_=_;

  (2)∵AB=AC,AD是中線,

  ∴∠_=∠_,_⊥_;

  (3)∵AB=AC,AD是角平分線,

  ∴_⊥_,_=_

  通過直觀模具演示,引出推論2,并出示小黑板[填空]、強調“三線合一”的運用方法。使學生留下深刻印象,并通過[填空]了解三線合一的運用方法。

  強調“三線合一”特征中的三線段前的定語的重要性,可讓學生實際畫圖驗證。

  (五)、啟發誘導,初步運用:

  例2:如圖,在△ABC中,AB=AC,D是BC邊上的中點,

  ∠B=30°,求∠1和∠ADC的度數。

  課堂練習:

  (1)P85練習3

  (2)例3已知:如圖,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

  (這是一道幾何計算題,要使學生加深對本課內容的應用,引導學生寫出解題過程)

  (六)、歸納小結,強化思想:

  (1)敘述等腰三角形的特征及其應用;

  (2)利用等腰三角形的特征可證明:兩角相等,兩線段相等,兩直線互相垂直。

  (3) 聯想方法要經常運用,對今后解題大有裨益。

  (七)、布置作業 ,引導預習:

  P86 習題9.3   1、3、4   預習課本:P85 等腰三角形

  課后思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?

14.3等腰三角形 篇14

  知識結構:

  重點與難點分析:

  本節內容的重點是定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.

  本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

  教法建議:

  本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:

  (1)參與探索發現,領略知識形成過程

  學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

  (2)采用“類比”的學習方法,獲取知識。

  由性質定理的學習,我們得到了幾個推論,自然想到:根據定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。

  (3)總結,形成知識結構

  為了使學生對本節課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?

  一.教學目標 

  1.使學生掌握定理及其推論;

  2.掌握等腰三角形判定定理的運用;

  3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學習的發展體驗獲取數學知識的感受;

  5.通過知識的縱橫遷移感受數學的辯證特征.

  二.教學重點定理

  三.教學難點 性質與判定的區別

  四.教學用具:直尺,微機

  五.教學方法:以學生為主體的討論探索法

  六.教學過程 

  1、新課背景知識復習

  (1)請同學們說出互逆命題和互逆定理的概念

  估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

  (2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?

  啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:

  1.定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導學生分析:

  聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.

  (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

  (3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.

  2.推論1:三個角都相等的三角形是等邊三角形.

  推論2:有一個角等于60°的等腰三角形是等邊三角形.

  要讓學生自己推證這兩條推論.

  小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應用舉例

  例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

  分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學生板演即可.

  補充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

  證明: DE//BC(已知)

  ,  

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結:

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習

  教材 P.75中1、2、3.

  八.作業 

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書設計 

14.3等腰三角形 篇15

  一、教學目的

  使學生掌握等腰三角形性質定理(包括推論)及其證明.

  二、教學重點、難點

  重點:等腰三角形的性質.

  難點:文字命題的證明.

  三、教學過程 

  復習提問

  什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點和底角?

  引入新課

  教師演示事先備好的等腰三角形紙片對折,使兩腰疊在一起,發現它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當然此命題的真實性還需推理論證.

  新課

  1.等腰三角形的性質定理 等腰三角形的兩底角相等(簡寫成“等邊對等角”).

  讓學生回憶前面學過的文字命題證明的全過程.引導學生寫出已知、求證,并且都要結合圖形使之具體化.

  2.推論1 等腰三角形頂角平分線平分底邊且垂直于底邊.

  從性質定理的證明過程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論.

  從推論1 可以知道,等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合.

  推論2 等邊三角形的各角都相等,并且每一個角都等于60°.

  3.等腰三角形性質的應用.等腰三角形的性質有著重要的應用,一般說,利用“等腰三角形兩底角相等”的性質證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質,來證明兩條線段相等、兩個角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個角都等于60°”的性質,來證明一個角是60°,或作圖中通過作等邊三角形,作出一個60°的角.

  例1 已知:如圖2,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC.求頂架上∠B、∠C、∠BAD、∠CAD的度數.

  這是一道幾何計算題,要使學生熟悉解計算題的步驟,引導學生寫出解題過程.

  小結

  1.敘述等腰三角形的性質(本堂所講定理及推論)及其應用.

  2.等腰三角形頂角與底角之間的常用關系式:在△ABC中,AB=AC,則

  (1)∠A=180°-2∠B=180°-2∠C;

  3.已知等腰三角形一個角的度數,求其它兩個角的度數:(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角.若為前者,可按2中(2)求出兩底角.若為后者,則可按2中(1)求出頂角.

  練習:略

  作業 :略

  四、教學注意問題

  1.等腰三角形的性質在今后解(證)幾何題中有著重要的應用,務必引起學生重視.且應反復練習.

  2.幾何計算題的一般解題步驟.

14.3等腰三角形 篇16

  【教材分析】

  這一節課主要學習等腰三角形“等邊對等角”及“底邊上的高、底邊上的中線、頂角的平分線互相重合”的性質.本節內容既是前面知識的深化和應用,又是下節學習等腰三角形和等邊三角形判別的預備知識,還是證明角相等、線段相等及兩條直線互相垂直的依據。學好它可以為將來初三解決代數、幾何綜合題打下良好的基礎。它在理論上有這樣重要的地位,并在實際生活中也有廣泛的應用,因此這節課的教學顯得相當重要,起著承前啟后的作用。

  【學情分析】

  在此之前,學生已學習了軸對稱圖形,這為過渡到本節的學習起著鋪墊作用。初二學生心理和認知發展規律要求在教學中要充分調動他們的激情,他們不喜歡鼓噪無味的數學課堂。根據認知理論和心理學的基本原理,學生對所學知識的掌握是通過感知階段、理解階段、鞏固(記憶)階段、應用(遷移)階段的發展實現的,知識的掌握如此,思維能力的培養也是如此,也應遵循認知遷移的規律,逐極展開。

  【教學目標】

  1、知識和技能目標:

  能夠探究,歸納,驗證等腰三角形的性質,并學會應用等腰三角形的性質。

  2.過程和方法目標:

  經歷剪紙,折紙等探究活動,進一步認識等腰三角形的定義和性質,了解等腰三角形是軸對稱圖形。

  3.情感和價值目標:

  培養學生的觀察能力,激發學生的好奇心和求知欲,培養學習的自信心。

  【教學重點和難點】

  1.教學重點

  等腰三角形的性質及應用

  2.教學難點

  等腰三角形性質的建立

  教學過程

14.3等腰三角形(精選16篇) 相關內容:
  • 等腰三角形

    §14.3.1.1 (二)教學目標1、理解并掌握等腰三角形的判定定理及推論2、能利用其性質與判定證明線段或角的相等關系.教學重點等腰三角形的判定定理及推論的運用教學難點正確區分等腰三角形的判定與性質.能夠利用等腰三角形的判定定理證明線...

  • 等腰三角形

    14.3 課時安排4課時從容說課前面兩節中,通過對生活中的軸對稱現象的認識,進一步對軸對稱的性質作了研究,還探討了軸對稱變換,能夠作出一些簡單的平面圖形關于一條直線的對稱圖形,所以學生對這些結論已經有所了解.本節在我們已學過的知...

  • §14.3.1.1  等腰三角形

    §14.3.1.1 等腰三角形 教學目標 1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用. 教學重點 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用. 教學難點 等腰三角形三線合一的性質的理解及其應用. 教學過程...

  • 等腰三角形說課稿范文(精選4篇)

    一、教材分析1、教材的地位和作用《等腰三角形的性質》是“華東師大版八年級數學(上)”第十三章第三節第一課時的內容。本節先課利用軸對稱的知識來探索發現等腰三角形的有關性質,然后利用全等三角形的知識證明這些性質。...

  • 分割等腰三角形的說課稿模板(通用2篇)

    一、教材分析(一)、教材內容的地位和作用《分割等腰三角形》是新教材第十四章《三角形》之后的探究課,我根據本校班級學生基礎知識掌握良好、認知能力良好但是思維品質缺乏、尖子生鳳毛麟角等實際情況下,降低要求設計的一節課,三角形...

  • 等腰三角形說課稿

    說課就是教師口頭表述具體課題的教學設想及其理論依據,也就是授課教師在備課的基礎上,面對同行或教研人員,講述自己的 教學設計,然后由聽者評說,達到互相交流,共同提高的目的的一種教學研究和師資培訓的活動。...

  • 第15章《軸對稱圖形和等腰三角形》期末總復習資料

    本章需要理解掌握的知識點有:一、軸對稱圖形和軸對稱1、軸對稱圖形是一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合。2、軸對稱是指兩個圖形沿一條直線對折,直線兩旁的兩個圖形能夠完全重合。...

  • 八年級上冊《等腰三角形的軸對稱性》2導學設計

    2.5等腰三角形的軸對稱性(2)教學目標1.掌握等腰三角形的判定定理.2.知道等邊三角形的性質以及等邊三角形的判定定理.3.經歷折紙、畫圖、觀察、推理等操作活動的合理性進行證明的過程,不斷感受合情推理和演繹推理都是人們正確認識事物的...

  • 等腰三角形和等邊三角形 教案

    教學內容:教科書p30例題,p31-32“想想做做”“你知道嗎?”(等腰三角形和等邊三角形)教學目標:1、 讓學生在實際操作中認識等腰三角形和等邊三角形,知道等腰三角形邊和角的名稱,知道等腰三角形兩個底角相等,等邊三角形三個內角相等...

  • 其他教案-等腰三角形

    3章等腰三角形教案(一)、溫故知新,激發情趣: 1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 等腰三角形定理

    一、說教材分析1、本課內容在初中數學教學中起著比較重要的作用,它是對三角形的性質的呈現。通過等腰三角形的性質反映在一個三角形中等邊對等角,等角對等邊的邊角關系,并且對軸對稱圖形性質的直觀反映(三線合一)。...

  • 數學教案-等腰三角形

    9.3章等腰三角形教案(一)、溫故知新,激發情趣:1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 第一冊等腰三角形

    (一)、溫故知新,激發情趣:1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 等腰三角形 —— 初中數學第一冊教案

    9.3章等腰三角形教案(一)、溫故知新,激發情趣:1、軸對稱圖形的有關概念,什么樣的三角形叫做等腰三角形?2、指出等腰三角形的腰、底邊、頂角、底角。(首先教師提問了解前置知識掌握情況,學生動腦思考、口答。...

  • 等腰三角形的性質(通用13篇)

    知識結構重點與難點分析:本節內容的重點是及其推論。等腰三角形兩底角相等(等邊對等角)是證明同一三角形中兩角相等的重要依據;而在推論中提到的等腰三角形底邊上的高、中線及頂角平分線三線合一這條重要性質也是證明兩線段相等,兩個...

  • 八年級數學教案
主站蜘蛛池模板: 91啦九色 | 天堂资源在线www中文 | 性开放按摩av大片 | A三级三级成人网站在线视频 | 国产亚州av| 国产超碰人人爽人人做AV | 中文字幕日本在线观看 | 久草老司机 | 亚洲第一成人,一区二区 | 美景之屋3在线观看 | 久久伊人一区二区 | 天天插天天爱 | 黄色网络在线观看 | 中文字幕永久网 | 天天摸天天做天天爽 | 艳妇荡乳豪妇荡乳av精东 | 欧美肥大BBBBBBBBB | 肥白大屁股BBWBBWHD | 69av视频在线| 99久久精品国产免费看 | 成人在线免费观看 | 久草毛片 | 99亚洲男女激情在线观看 | 香蕉久久丫精品忘忧草产品 | 香蕉视频成人在线 | 黄页网站视频免费大全 | WWW夜片内射视频在观看视频 | 蜜芽国内精品视频在线观看 | 老中医吮她的花蒂和奶水视频播放 | 熟妇人妻AV中文字幕老熟妇 | 爱情岛论坛亚洲品质自拍hd | 风间由美无打码在线观看 | 久爱国产 | 毛片无码一区二区三区a片视频 | 麻豆快播 | 久久在线一区 | 欧美一线高本道高清免费 | 国产精品一区二区久久久久 | 精品人妻系列无码专区久久 | 肉蒲团从国内封禁到日本成经典 | 精品国产乱码久久久久久牛牛 |