§14.3.1.1 等腰三角形
§14.3.1.1 等腰三角形
教學(xué)目標(biāo)
1.等腰三角形的概念.
2.等腰三角形的性質(zhì).
3.等腰三角形的概念及性質(zhì)的應(yīng)用.
教學(xué)重點(diǎn)
1.等腰三角形的概念及性質(zhì).
2.等腰三角形性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn)
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
教學(xué)過(guò)程
ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?
有的三角形是軸對(duì)稱圖形,有的三角形不是.
問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?
滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.
我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.
ⅱ.導(dǎo)入新課
要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.
作一條直線l,在l上取點(diǎn)a,在l外取點(diǎn)b,作出點(diǎn)b關(guān)于直線l的對(duì)稱點(diǎn)c,連結(jié)ab、bc、ca,則可得到一個(gè)等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难⒌走叀㈨斀呛偷捉?
思考:
1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.
沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).