高二上冊《雙曲線的簡單幾何性質》說課設計
二、教學程序
(一).設計思路
(二).教學流程
1.復習引入
我們已經學習過橢圓的標準方程和雙曲線的標準方程,以及橢圓的簡單的幾何性質,請同學們來回顧這些知識點,對學習的舊知識加以復習鞏固,同時為新知識的學習做準備,利用多媒體工具的先進性,結合圖像來演示。
2.觀察、類比
這節課內容是通過雙曲線方程推導、研究雙曲線的性質,本節內容類似于“橢圓的簡單的幾何性質”,教學中可以與其類比講解,讓學生自己進行探究,首先觀察雙曲線的形狀,試著按照橢圓的幾何性質,歸納總結出雙曲線的幾何性質。一般學生能用類似于推導橢圓的幾何性質的方法得出雙曲線的范圍、對稱性、頂點、離心率,對知識的理解不能浮于表面只會看圖,也要會從方程的角度來解釋,抓住方程的本質。用多媒體演示,加強學生對雙曲線的簡單幾何性質范圍、對稱性、頂點(實軸、虛軸)、離心率(不深入的講解)的鞏固。之后,比較雙曲線的這四個性質和橢圓的性質有何聯系及區別,這樣可以加強新舊知識的聯系,借助于類比方法,引起學生學習的興趣,激發求知欲。
3.雙曲線的漸近線的發現、證明
(1)發現
由橢圓的幾何性質,我們能較準確地畫出橢圓的圖形。那么,由雙曲線的幾何性質,能否較準確地畫出雙曲線
的圖形為引例,讓學生動筆實踐,通過列表描點,就能把雙曲線的頂點及附近的點較準確地畫出來,但雙曲線向遠處如何伸展就不是很清楚。從而說明想要準確的畫出雙曲線的圖形只有那四個性質是不行的。
從學生曾經學習過的反比例函數入手,而且可以比較精確的畫出反比例函數
的圖像,它的圖像是雙曲線,當雙曲線伸向遠處時,它與x、y軸無限接近,此時x、y軸是
的漸近線,為后面引出漸近線的概念埋下伏筆。從而讓學生猜想雙曲線
有何特征?有沒有漸近線?由于雙曲線的對稱性,我們只須研究它的圖形在第一象限的情況即可。在研究雙曲線的范圍時,由雙曲線的標準方程
,可解出
,
,當x無限增大時,y也隨之增大,不容易發現它們之間的微妙關系。但是如果將式子變形為
,我們就會發現:當x無限增大,
逐漸減小、無限接近于0,而
就逐漸增大、無限接近于1(
);若將
變形為
,即說明此時雙曲線在第一象限,當x無限增大時,其上的點與坐標原點之間連線的斜率比1小,但與斜率為1的直線無限接近,且此點永遠在直線
的下方。其它象限向遠處無限伸展的變化趨勢就可以利用對稱性得到,從而可知雙曲線
的圖形在遠處與直線
無限接近,此時我們就稱直線
叫做雙曲線
的漸近線。這樣從已有知識出發,層層設(釋)疑,激活已知,啟迪思維,調動學生自身探索的內驅力,進一步清晰概念(或圖形)特征,培養思維的深刻性。
利用由特殊到一般的規律,就可以引導學生探尋雙曲線
(a>0,b>0)的漸近線,讓學生同樣利用類比的方法,將其變形為
,
,由于雙曲線的對稱性,我們可以只研究第一象限向遠處的變化趨勢,繼續變形為
,
,可發現當x無限增大時,
逐漸減小、無限接近于0,
逐漸增大、無限接近于
,即說明對于雙曲線在第一象限遠處的點與坐標原點之間連線的斜率比
小,與斜率為
的直線無限接近,且此點永遠在直線