對數函數
3. 性質
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側.
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.
(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.
(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的
當 時,在 上是減函數,即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:
當 時,有 ;當 時,有 .
學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.
最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(非凡強調它們單調性的一致性)
對圖像和性質有了一定的了解后,一起來看看它們的應用.
三.簡單應用 (板書)
1. 研究相關函數的性質
例1. 求下列函數的定義域:
(1) (2) (3)
先由學生依次列出相應的不等式,其中非凡要注重對數中真數和底數的條件限制.
2. 利用單調性比較大小 (板書)
例2. 比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與 ; (4) 與 .
讓學生先說出各組數的特征即它們的底數相同,故可以構造對數函數利用單調性來比大小.最后讓學生以其中一組為例寫出具體的比較過程.
三.鞏固練習
練習:若 ,求 的取值范圍.
四.小結
五.作業 略
板書設計
2.8對數函數
一. 概念
1. 定義2.熟悉
二.圖像與性質
1.作圖方法
2.草圖
圖1 圖2
3.性質
(1) 定義域(2)值域(3)截距(4)奇偶性(5)單調性
三.應用
1.相關函數的研究
例1 例2
練習
探究活動
(1) 已知 是函數 的反函數,且 都有意義.
① 求 ;
② 試比較 與4 的大小,并說明理由.
(2) 設常數 則當 滿足什么關系時, 的解集為
答案:
(1) ① ;
②當 時, <4 ;當 時,