《對(duì)數(shù)函數(shù)的應(yīng)用》導(dǎo)學(xué)案
教學(xué)目標(biāo):①掌握對(duì)數(shù)函數(shù)的性質(zhì)。
②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0<a<1時(shí),函數(shù)y=logax單
調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞
增,所以loga5.1<loga5.9。
板書:
解:ⅰ)當(dāng)0<a<1時(shí),函數(shù)y=logax在(0,+∞)上是減函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9
ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1<loga5.9
師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?
生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。
師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,
log0.50.6<1,所以logл0.5< log0.50.6< lnл。
板書:略。
師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函
數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)
函數(shù)圖象的位置關(guān)系來比大小。
2 函數(shù)的定義域, 值 域及單調(diào)性。
例 2 ⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要
使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,
被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于
零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求
它們共同作用的結(jié)果。)
生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個(gè)不等式。
分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,
再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。
師:請(qǐng)你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2<x<3
不等式的解為:1<x<3
例 3 求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。
下面請(qǐng)同學(xué)們來解⑴。
生:此函數(shù)可看作是由y= log0.5u, u= x- x2復(fù)合而成。