切線長定理(精選11篇)
切線長定理 篇1
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:及其應用.因再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與有關的證明和計算問題.如120頁練習題中第3題,它不僅應用,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
是教學重點
教學難點 :
的靈活運用是教學難點
教學過程 設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與一起歸納切線的性質
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
P120練習:
練習1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內切圓分別和BC,AC,AB切于點D,E,F,求AF,AD和CE的長.
分析:設各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注意哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材P131習題7.4A組1.(1),2,3,4.B組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.
提示:在圖1中,連結PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應在圓上.
在圖2中,設P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應重合,故圖2是錯誤的.
切線長定理 篇2
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:及其應用.因再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與有關的證明和計算問題.如120頁練習題中第3題,它不僅應用,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
是教學重點
教學難點 :
的靈活運用是教學難點
教學過程 設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與一起歸納切線的性質
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
P120練習:
練習1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內切圓分別和BC,AC,AB切于點D,E,F,求AF,AD和CE的長.
分析:設各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注意哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材P131習題7.4A組1.(1),2,3,4.B組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.
提示:在圖1中,連結PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應在圓上.
在圖2中,設P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應重合,故圖2是錯誤的.
切線長定理 篇3
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:及其應用.因再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與有關的證明和計算問題.如120頁練習題中第3題,它不僅應用,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
是教學重點
教學難點:
的靈活運用是教學難點
教學過程設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與一起歸納切線的性質
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
P120練習:
練習1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內切圓分別和BC,AC,AB切于點D,E,F,求AF,AD和CE的長.
分析:設各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注意哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材P131習題7.4A組1.(1),2,3,4.B組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.
提示:在圖1中,連結PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應在圓上.
在圖2中,設P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應重合,故圖2是錯誤的.
切線長定理 篇4
教學目標:1、使學生理解切線長定義.2、使學生掌握切線長定理,并能初步運用.教學重點: 切線長定理,它在以后的證明中經常使用.教學難點:切線長定理的歸納.學生在觀察后可以敘述內容,但語言可能是不規范的.教學過程:一、新課引入:我們已經學習了圓的切線的性質,今天我們繼續來學習圓的切線的其它性質.經過平面上的已知點作已知圓的切線,會有怎樣的情形呢?請同學們打開練習本畫一畫.學生動手畫,教師巡視.當學生把可能的位置情況畫完后,教師指導全班同學交流并得到結論:1.經過圓內已知點不能作圓的切線;2.經過圓上已知點可作圓的唯一一條切線;3.經過圓外一已知點可作圓的兩條切線.二、新課講解:觀察從圓外一點所引圓的切線上,有一條線段,線段的端點一邊是已知點,一邊是切點.務必使學生清楚,我們是把這樣的一條線段的長度定義為切線長.提醒學生注意,直線是沒有長度的事實.然后讓學生觀察從圓外一點引圓的兩條切線會產生什么樣的結論?開始不要害怕學生的語言不簡煉,教師最終指導學生把握“從”、“引”、“它們”、“連線平分”、“夾角”,完成切線長定理.1.在經過圓外一點的圓的切線上,這點和切點之間的線段的長,叫做這點到圓的切線長.2.切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.練習一,已知:⊙o的半徑為3厘米,點p和圓心o的距離為6厘米,經過點p和⊙o的兩條切線,求這兩條切線的夾角及切線長.提示,如圖7-66,連結oe,由切線的性質定理得rt△poe,已知oe=3,op=6,勾股定理求出pe后,再求∠1,然后2倍的∠1.
練習二,如圖7-67,pa、pb是⊙o的兩條切線,a、b為切點,直線op交⊙o于d、e,交ab于e.
(1)寫出圖中所有的垂直關系.(2)寫出圖中所有的全等三角形.例1 p.119例1已知:如圖7-68,p為⊙o外一點,pa、pb為⊙o的切線,a和b是切點,bc是直徑.求證:ac∥op.
分析:欲證ac∥op.題中已知bc為⊙o的直徑,可想到ca⊥ab,若能證出op⊥ab,問題便得到解決.可指導學生考慮切線長定理,證三角形pab為等腰三角形,再根據“三線合一”的性質,證得op⊥ab,證法參考教材p.119例1.在證明ac∥op時,除了上面的方法,還可以從角的相等關系來證.例2 p.119,圓外切四邊形的兩組對邊的和相等.已知:如圖7-69,四邊形abcd的邊ab、bc、cd、da和⊙o分別相切于l、m、n,p.求證:ab+cd=ad+bc.
分析:這是本書中唯一在今后可做為定理使用的例題.首先教師指導學生根據文字命題正確地使用已知,求證的形式把命題具體化.然后指導學生完成證明,證明過程參照教材.練習三,p.120中3.已知:如圖7-70,在△abc中,bc=14cm,ac=9cm,ab=13cm,它的內切圓分別和bc、ac、ab切于點d、e、f,求af、bd、ce的長.
分析:這是一道利用幾何圖形的性質,采用代數的解題方法的一道計算題.教學中教師要注意引導學生通過解三元一次方程組來得到切線長.解:∵ab、ac分別切⊙o于f、e,∴af=ae.同理:bf=bd,cd=ce.設af=x,bd=y,ce=z.答:切線長af=4厘米,bd=9厘米,ce=5厘米.三、課堂小結:讓學生閱讀教材p.118至p.120,并總結歸納出本課的主要內容.1.切線長定義.2.切線長定理及其應用.提醒學生注意由切線長可得到一個等腰三角形.這一點和圓心的連線不但平分兩切線的夾角,還垂直平分兩切點間的線段.四、布置作業:1.教材p.131習題7.4 2、3、4.2.教材p.133b組3.
切線長定理 篇5
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:及其應用.因再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與有關的證明和計算問題.如120頁練習題中第3題,它不僅應用,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
是教學重點
教學難點 :
的靈活運用是教學難點
教學過程 設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與一起歸納切線的性質
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
P120練習:
練習1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內切圓分別和BC,AC,AB切于點D,E,F,求AF,AD和CE的長.
分析:設各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注意哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材P131習題7.4A組1.(1),2,3,4.B組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.
提示:在圖1中,連結PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應在圓上.
在圖2中,設P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應重合,故圖2是錯誤的.
切線長定理 篇6
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:切線長定理及其應用.因切線長定理再次體現了圓的軸對稱性,它為證實線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與切線長定理有關的證實和計算問題.如120頁練習題中第3題,它不僅應用切線長定理,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證實,并深刻剖析切線長定理的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證實——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,把握切線長定理;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證實,激發學生的學習愛好,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
切線長定理是教學重點
教學難點:
切線長定理的靈活運用是教學難點
教學過程設計:
(一)觀察、猜想、證實,形成定理
1、切線長的概念.
如圖,p是⊙o外一點,pa,pb是⊙o的兩條切線,我們把線段pa,pb叫做點p到⊙o的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點p 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判定,猜想圖中pa是否等于pb. pa=pb.
4、證實猜想,形成定理.
猜想是否正確。需要證實.
組織學生分析證實方法.關鍵是作出輔助線oa,ob,要證實pa=pb.
想一想:根據圖形,你還可以得到什么結論?
∠opa=∠opb(如圖)等.
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與切線長定理一起歸納切線的性質
6、切線長定理的基本圖形研究
如圖,pa,pb是⊙o的兩條切線,a,b為切點.直線op交⊙o于點d,e,交ap于c
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和熟悉是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,p為⊙o外一點,pa,pb為⊙o的切線,
a和b是切點,bc是直徑.
求證:ac∥op.
分析:從條件想,由p是⊙o外一點,pa、pb為⊙o的切線,a,b是切點可得pa=pb,∠apo=∠bpo,又由條件bc是直徑,可得ob=oc,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線ab.
從結論想,要證ac∥op,假如連結ab交op于o,轉化為證ca⊥ab,op ⊥ab,或從od為△abc的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結ab.
pa,pb分別切⊙o于a,b
∴pa=pb∠apo=∠bpo
∴ op ⊥ab
又∵bc為⊙o直徑
∴ac⊥ab
∴ac∥op (學生板書)
證法二.連結ab,交op于d
pa,pb分別切⊙o于a、b
∴pa=pb∠apo=∠bpo
∴ad=bd
又∵bo=do
∴od是△abc的中位線
∴ac∥op
證法三.連結ab,設op與ab弧交于點e
pa,pb分別切⊙o于a、b
∴pa=pb
∴ op ⊥ab
∴ =
∴∠c=∠pob
∴ac∥op
反思:教師引導學生比較以上證法,激發學生的學習愛好,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
p120練習:
練習1填空
如圖,已知⊙o的半徑為3厘米,po=6厘米,pa,pb分別切⊙o于a,b,則pa=_______,∠apb=________
練習2已知:在△abc中,bc=14厘米,ac=9厘米,ab=13厘米,它的內切圓分別和bc,ac,ab切于點d,e,f,求af,ad和ce的長.
分析:設各切線長af,bd和ce分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和切線長定理之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注重哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材p131習題7.4a組1.(1),2,3,4.b組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,p1a為⊙o1和⊙o3的切線、p1b為⊙o1和⊙o2的切線、p2c為⊙o2和⊙o3的切線.
提示:在圖1中,連結pc、pd,則pc、pd都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點o應在圓上.
在圖2中,設p1a=p1b=a,p2b=p2c=b,p3a=p3c=c,則有
a= p1a= p1p3 p3a= p1p3 c①
c= p3c= p2p3 p3a= p2p3 b②
a= p1b= p1p2 p2b= p1p2 b③
將②代人①式得
a = p1p3 (p2p3 b)= p1p3 p2p3 b,
∴ab= p1p3 p2p3
由③得ab= p1p2得
∴p1p2= p2p3 p1p3
∴p1、p 2 、p3應重合,故圖2是錯誤的.
切線長定理 篇7
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:及其應用.因再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與有關的證明和計算問題.如120頁練習題中第3題,它不僅應用,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
是教學重點
教學難點:
的靈活運用是教學難點
教學過程設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與一起歸納切線的性質
6、的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
第 1 2 頁
切線長定理 篇8
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:切線長定理及其應用.因切線長定理再次體現了圓的軸對稱性,它為證明線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與切線長定理有關的證明和計算問題.如120頁練習題中第3題,它不僅應用切線長定理,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證明,并深刻剖析切線長定理的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,掌握切線長定理;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證明,激發學生的學習興趣,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
切線長定理是教學重點
教學難點 :
切線長定理的靈活運用是教學難點
教學過程 設計:
(一)觀察、猜想、證明,形成定理
1、切線長的概念.
如圖,P是⊙O外一點,PA,PB是⊙O的兩條切線,我們把線段PA,PB叫做點P到⊙O的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點P 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判斷,猜想圖中PA是否等于PB. PA=PB.
4、證明猜想,形成定理.
猜想是否正確。需要證明.
組織學生分析證明方法.關鍵是作出輔助線OA,OB,要證明PA=PB.
想一想:根據圖形,你還可以得到什么結論?
∠OPA=∠OPB(如圖)等.
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與切線長定理一起歸納切線的性質
6、切線長定理的基本圖形研究
如圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AP于C
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和認識是在學習幾何中關鍵,它是靈活應用知識的基礎.
(二)應用、歸納、反思
例1、已知:如圖,P為⊙O外一點,PA,PB為⊙O的切線,
A和B是切點,BC是直徑.
求證:AC∥OP.
分析:從條件想,由P是⊙O外一點,PA、PB為⊙O的切線,A,B是切點可得PA=PB,∠APO=∠BPO,又由條件BC是直徑,可得OB=OC,由此聯想到與直徑有關的定理“垂徑定理”和“直徑所對的圓周角是直角”等.于是想到可能作輔助線AB.
從結論想,要證AC∥OP,如果連結AB交OP于O,轉化為證CA⊥AB,OP ⊥AB,或從OD為△ABC的中位線來考慮.也可考慮通過平行線的判定定理來證,可獲得多種證法.
證法一.如圖.連結AB.
PA,PB分別切⊙O于A,B
∴PA=PB∠APO=∠BPO
∴ OP ⊥AB
又∵BC為⊙O直徑
∴AC⊥AB
∴AC∥OP (學生板書)
證法二.連結AB,交OP于D
PA,PB分別切⊙O于A、B
∴PA=PB∠APO=∠BPO
∴AD=BD
又∵BO=DO
∴OD是△ABC的中位線
∴AC∥OP
證法三.連結AB,設OP與AB弧交于點E
PA,PB分別切⊙O于A、B
∴PA=PB
∴ OP ⊥AB
∴ =
∴∠C=∠POB
∴AC∥OP
反思:教師引導學生比較以上證法,激發學生的學習興趣,培養學生靈活應用知識的能力.
例2、 圓的外切四邊形的兩組對邊的和相等.
(分析和解題略)
反思:(1)例3事實上是圓外切四邊形的一個重要性質,請學生記住結論.(2)圓內接四邊形的性質:對角互補.
P120練習:
練習1 填空
如圖,已知⊙O的半徑為3厘米,PO=6厘米,PA,PB分別切⊙O于A,B,則PA=_______,∠APB=________
練習2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的內切圓分別和BC,AC,AB切于點D,E,F,求AF,AD和CE的長.
分析:設各切線長AF,BD和CE分別為x厘米,y厘米,z厘米.后列出關于x , y,z的方程組,解方程組便可求出結果.
(解略)
反思:解這個題時,除了要用三角形內切圓的概念和切線長定理之外,還要用到解方程組的知識,是一道綜合性較強的計算題.通過對本題的研究培養學生的綜合應用知識的能力.
(三)小結
1、提出問題學生歸納
(1)這節課學習的具體內容;
(2)學習用的數學思想方法;
(3)應注意哪些概念之間的區別?
2、歸納基本圖形的結論
3、學習了用代數方法解決幾何問題的思想方法.
(四)作業
教材P131習題7.4A組1.(1),2,3,4.B組1題.
探究活動
圖中找錯
你能找出(圖1)與(圖2)的錯誤所在嗎?
在圖2中,P1A為⊙O1和⊙O3的切線、P1B為⊙O1和⊙O2的切線、P2C為⊙O2和⊙O3的切線.
提示:在圖1中,連結PC、PD,則PC、PD都是圓的直徑,從圓上一點只能作一條直徑,所以此圖是一張錯圖,點O應在圓上.
在圖2中,設P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,則有
a=P1A=P1P3+P3A=P1P3+ c ①
c=P3C=P2P3+P3A=P2P3+ b ②
a=P1B=P1P2+P2B=P1P2+ b ③
將②代人①式得
a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,
∴a-b=P1P3+P2P3
由③得a-b=P1P2得
∴P1P2=P2P3+ P1P3
∴P1、P 2 、P3應重合,故圖2是錯誤的.
切線長定理 篇9
6.4切線長定理
教學目的:
1.使學生理解切線長的概念,掌握切線長定理.
2.使學生學會運用切線長定理解有關問題.
3.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
教學重點和難點:
切線長定理是教學的重點.切線長定理的靈活運用是教學的難點.
教學過程 :
一、復習提間:
1.背誦切線的判定定理和性質定理.
2.過圓上一點可作圓的幾條切線?過圓外一點呢?過圓內一點呢?
二、講授新課:
1.切線長的概念(教師強調指出:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.).
教師先畫出圖形,圖1,然后板書:已知P是⊙O外一點,PA、PB是⊙O的切線,A、B是切點.接著,直接告訴學生:切線PA、PB是直線,但在研究切線的一些特性時,需要用到線段PA、PB或者它們的長度(同學們在以后做題時將體會到)所以給圖中的線段PA、PB的長起個名字叫做“切線長”.切線長的定義是:在經過圓外一點的切線上,這一點和切點之間的線段的長叫做這點到圓的切線長.
2.切線長定理(講清定理的條件和結論、證明方法,并要求學生課上基本記住).
教師 引導學生繼續觀察,直觀判斷,猜想圖中PA是否等于PB.學生容易想到PA=PB.圖形可能存在著什么關系(線段PA=PB),能不能證明出線段PA=PB呢?我們先從已知條件考慮:由“PA、PB是⊙O的切線,A、B是切點”可以得出什么?(連結OA、OB則∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否證出PA=PB(連結OP得△OAP≌△OBP).通過三角形全等,不但證明了PA=PB,而且證出了∠OPA=∠OPB.
教師板書證明過程
證明:連結OA、OB、OP.PA、PB切⊙O于A、B
引導學生用文字語言敘述出切線長定理的具體內容:
切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
3.切線長定理的應用.
(1) 例1 如下圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AB于C.
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
(通過此例引導學生把新舊知識聯系起來,找出一些規律性的東西,便于運用,也有利于開闊學生的思路)
例2 圓的外切四邊形的兩組對邊的和相等.
引導學生畫出圖形,并根據下圖寫出已知和求證.最后師生共同完成證明過程.
例2是圓外切四邊形的一個重要性質,要求學生記住結論.
三、小結:
本節主要學習了切線長定義和切線長定理. 強調切線長和切線的概念不同.要注意切線長定理的靈活運用.要熟習添加不同的輔助線以后所得出的結果.
6.4切線長定理
教學目的:
1.使學生理解切線長的概念,掌握切線長定理.
2.使學生學會運用切線長定理解有關問題.
3.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
教學重點和難點:
切線長定理是教學的重點.切線長定理的靈活運用是教學的難點.
教學過程 :
一、復習提間:
1.背誦切線的判定定理和性質定理.
2.過圓上一點可作圓的幾條切線?過圓外一點呢?過圓內一點呢?
二、講授新課:
1.切線長的概念(教師強調指出:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.).
教師先畫出圖形,圖1,然后板書:已知P是⊙O外一點,PA、PB是⊙O的切線,A、B是切點.接著,直接告訴學生:切線PA、PB是直線,但在研究切線的一些特性時,需要用到線段PA、PB或者它們的長度(同學們在以后做題時將體會到)所以給圖中的線段PA、PB的長起個名字叫做“切線長”.切線長的定義是:在經過圓外一點的切線上,這一點和切點之間的線段的長叫做這點到圓的切線長.
2.切線長定理(講清定理的條件和結論、證明方法,并要求學生課上基本記住).
教師 引導學生繼續觀察,直觀判斷,猜想圖中PA是否等于PB.學生容易想到PA=PB.圖形可能存在著什么關系(線段PA=PB),能不能證明出線段PA=PB呢?我們先從已知條件考慮:由“PA、PB是⊙O的切線,A、B是切點”可以得出什么?(連結OA、OB則∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否證出PA=PB(連結OP得△OAP≌△OBP).通過三角形全等,不但證明了PA=PB,而且證出了∠OPA=∠OPB.
教師板書證明過程
證明:連結OA、OB、OP.PA、PB切⊙O于A、B
引導學生用文字語言敘述出切線長定理的具體內容:
切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
3.切線長定理的應用.
(1) 例1 如下圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AB于C.
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
(通過此例引導學生把新舊知識聯系起來,找出一些規律性的東西,便于運用,也有利于開闊學生的思路)
例2 圓的外切四邊形的兩組對邊的和相等.
引導學生畫出圖形,并根據下圖寫出已知和求證.最后師生共同完成證明過程.
例2是圓外切四邊形的一個重要性質,要求學生記住結論.
三、小結:
本節主要學習了切線長定義和切線長定理. 強調切線長和切線的概念不同.要注意切線長定理的靈活運用.要熟習添加不同的輔助線以后所得出的結果.
切線長定理 篇10
6.4切線長定理
教學目的:
1.使學生理解切線長的概念,掌握切線長定理.
2.使學生學會運用切線長定理解有關問題.
3.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
教學重點和難點:
切線長定理是教學的重點.切線長定理的靈活運用是教學的難點.
教學過程 :
一、復習提間:
1.背誦切線的判定定理和性質定理.
2.過圓上一點可作圓的幾條切線?過圓外一點呢?過圓內一點呢?
二、講授新課:
1.切線長的概念(教師強調指出:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.).
教師先畫出圖形,圖1,然后板書:已知P是⊙O外一點,PA、PB是⊙O的切線,A、B是切點.接著,直接告訴學生:切線PA、PB是直線,但在研究切線的一些特性時,需要用到線段PA、PB或者它們的長度(同學們在以后做題時將體會到)所以給圖中的線段PA、PB的長起個名字叫做“切線長”.切線長的定義是:在經過圓外一點的切線上,這一點和切點之間的線段的長叫做這點到圓的切線長.
2.切線長定理(講清定理的條件和結論、證明方法,并要求學生課上基本記住).
教師 引導學生繼續觀察,直觀判斷,猜想圖中PA是否等于PB.學生容易想到PA=PB.圖形可能存在著什么關系(線段PA=PB),能不能證明出線段PA=PB呢?我們先從已知條件考慮:由“PA、PB是⊙O的切線,A、B是切點”可以得出什么?(連結OA、OB則∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否證出PA=PB(連結OP得△OAP≌△OBP).通過三角形全等,不但證明了PA=PB,而且證出了∠OPA=∠OPB.
教師板書證明過程
證明:連結OA、OB、OP.PA、PB切⊙O于A、B
引導學生用文字語言敘述出切線長定理的具體內容:
切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
3.切線長定理的應用.
(1) 例1 如下圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AB于C.
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
(通過此例引導學生把新舊知識聯系起來,找出一些規律性的東西,便于運用,也有利于開闊學生的思路)
例2 圓的外切四邊形的兩組對邊的和相等.
引導學生畫出圖形,并根據下圖寫出已知和求證.最后師生共同完成證明過程.
例2是圓外切四邊形的一個重要性質,要求學生記住結論.
三、小結:
本節主要學習了切線長定義和切線長定理. 強調切線長和切線的概念不同.要注意切線長定理的靈活運用.要熟習添加不同的輔助線以后所得出的結果.
切線長定理 篇11
教學目的:
1.使學生理解切線長的概念,掌握切線長定理.
2.使學生學會運用切線長定理解有關問題.
3.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
教學重點和難點:
切線長定理是教學的重點.切線長定理的靈活運用是教學的難點.
教學過程 :
一、復習提間:
1.背誦切線的判定定理和性質定理.
2.過圓上一點可作圓的幾條切線?過圓外一點呢?過圓內一點呢?
二、講授新課:
1.切線長的概念(教師強調指出:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.).
教師先畫出圖形,圖1,然后板書:已知P是⊙O外一點,PA、PB是⊙O的切線,A、B是切點.接著,直接告訴學生:切線PA、PB是直線,但在研究切線的一些特性時,需要用到線段PA、PB或者它們的長度(同學們在以后做題時將體會到)所以給圖中的線段PA、PB的長起個名字叫做“切線長”.切線長的定義是:在經過圓外一點的切線上,這一點和切點之間的線段的長叫做這點到圓的切線長.
2.切線長定理(講清定理的條件和結論、證明方法,并要求學生課上基本記住).
教師 引導學生繼續觀察,直觀判斷,猜想圖中PA是否等于PB.學生容易想到PA=PB.圖形可能存在著什么關系(線段PA=PB),能不能證明出線段PA=PB呢?我們先從已知條件考慮:由“PA、PB是⊙O的切線,A、B是切點”可以得出什么?(連結OA、OB則∠OAP=Rt∠,∠OBP=Rt∠,且OA=OB).再想一想能否證出PA=PB(連結OP得△OAP≌△OBP).通過三角形全等,不但證明了PA=PB,而且證出了∠OPA=∠OPB.
教師板書證明過程
證明:連結OA、OB、OP.PA、PB切⊙O于A、B
引導學生用文字語言敘述出切線長定理的具體內容:
切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
3.切線長定理的應用.
(1) 例1 如下圖,PA,PB是⊙O的兩條切線,A,B為切點.直線OP交⊙O于點D,E,交AB于C.
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
(通過此例引導學生把新舊知識聯系起來,找出一些規律性的東西,便于運用,也有利于開闊學生的思路)
例2 圓的外切四邊形的兩組對邊的和相等.
引導學生畫出圖形,并根據下圖寫出已知和求證.最后師生共同完成證明過程.
例2是圓外切四邊形的一個重要性質,要求學生記住結論.
三、小結:
本節主要學習了切線長定義和切線長定理. 強調切線長和切線的概念不同.要注意切線長定理的靈活運用.要熟習添加不同的輔助線以后所得出的結果.