三角形的內(nèi)切圓(精選7篇)
三角形的內(nèi)切圓 篇1
教學(xué)目標:1、使學(xué)生學(xué)會作.2、理解三角形內(nèi)切圓的有關(guān)概念.3、掌握三角形的內(nèi)心、外心的位置、數(shù)量特征.4、會關(guān)于內(nèi)心的一些角度的計算.教學(xué)重點: 掌握三角形內(nèi)切圓的畫法、理解三角形內(nèi)切圓的有關(guān)概念.同三角形的外接圓一樣,務(wù)必使學(xué)生準確掌握三角形內(nèi)切圓的畫法.教學(xué)難點:畫鈍角三角形的內(nèi)切圓,學(xué)生極有可能畫出與三角形的邊相交或相離的情形.教學(xué)過程:一、新課引入:我們已經(jīng)學(xué)習(xí)過三角形的外接圓的畫法及有關(guān)概念,現(xiàn)在我們用同樣的思想方法來研究三角形的內(nèi)切圓的畫法及有關(guān)概念.二、新課講解:在一塊三角形的紙片上,怎樣才能剪下一個面積最大的圓呢?實際上它就是作圖問題:例1 作圓,使它和已知三角形的各邊都相切.已知:△abc.求作:和△abc的三邊都相切的圓.
讓學(xué)生展開討論,教師指導(dǎo)學(xué)生發(fā)現(xiàn),作圓的關(guān)鍵是確定圓心,因為所求圓與△abc的三邊都相切,所以圓心到三邊的距離相等,顯然這個點既要在∠b的平分線上,又要在∠c的平分線上.那它就應(yīng)該是兩條角平分線的交點,而交點到任何一邊的垂線段長就是該圓的半徑.學(xué)生動手畫,教師巡視.當(dāng)所有學(xué)生把銳角三角形的內(nèi)切圓畫出來時,教師可打開計算機或幻燈機給同學(xué)們作演示,演示的過程一定要分步驟進行.然后學(xué)生按左右分別畫直角三角形和鈍角三角形的內(nèi)切圓.這時學(xué)生在畫鈍角三角形的內(nèi)切圓時,可能出現(xiàn)與邊相交或相離的情形,這很正常,教師要幫助學(xué)生加以糾正,并最終指導(dǎo)學(xué)生完成下列問題:l.三角形的內(nèi)切圓、內(nèi)心、圓的外切三角形:和三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.2.多邊形的內(nèi)切圓、圓的外切多邊形:和多邊形的各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.3.內(nèi)心是什么的交點?內(nèi)心是三角形三個角的平分線的交點.4.內(nèi)心有什么數(shù)量特征?內(nèi)心到三角形各邊的距離相等.5.內(nèi)心的位置:三角形的內(nèi)心都在三角形的內(nèi)部.(三)重點、難點的學(xué)習(xí)與目標完成過程.關(guān)于三角形內(nèi)切圓的有關(guān)概念,與三角形的外接圓類似,三角形的內(nèi)切圓是直線和圓的位置關(guān)系中的一個非常重要的位置.待學(xué)生理解了有關(guān)概念后,可在黑板上采取對比的方式.如:三角形的外接圓 三角形的內(nèi)切圓1.定義 1.定義2.外心 2.內(nèi)心3.圓的內(nèi)接三角形 3.圓的外切三角形4.外心是誰的交點 4.內(nèi)心是誰的交點5.外心的數(shù)量特征 5.內(nèi)心的數(shù)量特征6.外心的位置 6.內(nèi)心的位置7.三角形外接圓的畫法 7.三角形內(nèi)切圓的畫法8.外接圓的唯一性與內(nèi)接三角形的多重性 8.內(nèi)切圓的唯一性與外切三角形的多重性.練習(xí)一,o是△abc的內(nèi)心,則oa平分∠bac對不對?為什么?練習(xí)二,o是△abc的內(nèi)心,∠bac=100°,則∠oac=50°,對不對?練習(xí)三,∠oac=40°,則∠b+∠c等于多少度?教材p、114中例2中如圖7-63,在△abc中,∠abc=50°,∠acb=75°,點o是內(nèi)心,求∠boc的度數(shù).
分析:此例題是邊推理邊計算的問題,教師在指導(dǎo)學(xué)生運用內(nèi)心的性質(zhì)的同時,也應(yīng)指導(dǎo)學(xué)生的解題步驟.解:答:∠boc=117.5°.練習(xí)四,o是△abc的內(nèi)心,∠a=80°,求∠boc的度數(shù).
解:
這是一組強化三角形內(nèi)心性質(zhì)的習(xí)題,逐題增加了靈活度,教學(xué)中也可就不同班級選用.三、課堂小結(jié):學(xué)生閱讀教材后總結(jié)出本課的主要內(nèi)容:1.會作各種三角形的內(nèi)切圓.2.定義三角形的內(nèi)切圓、內(nèi)心及圓的外切三角形.3.內(nèi)心是誰的交點:位置如何?它有什么位置關(guān)系?四、布置作業(yè)(1)教材p.116中10、11、12.(2)教材p.117b組3.
三角形的內(nèi)切圓 篇2
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標 :
1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點 :
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
(三)應(yīng)用與反思
例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內(nèi)心.
求∠BOC的度數(shù)
分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因為O是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).
解:(引導(dǎo)學(xué)生分析,寫出解題過程)
例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.
從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.
證明:連結(jié)BE.
E是△ABC的內(nèi)心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習(xí) 分析作出已知的銳角三角形、直角三角形、鈍角,并說明三角形的內(nèi)心是否都在三角形內(nèi).
(四)小結(jié)
1.教師先向?qū)W生提出問題:這節(jié)課學(xué)習(xí)了哪些概念?怎樣作已知?學(xué)習(xí)時互該注意哪些問題?
2.學(xué)生回答的基礎(chǔ)上,歸納總結(jié):
(1)學(xué)習(xí)了三角形內(nèi)切圓、三角形的內(nèi)心、圓的外切三角形、多邊形的內(nèi)切圓、圓的外切多邊形的概念.
(2)利用作三角形的內(nèi)角平分線,任意兩條角平分線的交點就是內(nèi)切圓的圓心,交點到任意一邊的距離是圓的半徑.
(3)在學(xué)習(xí)有關(guān)概念時,應(yīng)注意區(qū)別“內(nèi)”與“外”,“接”與“切”;還應(yīng)注意“連結(jié)內(nèi)心和三角形頂點”這一輔助線的添加和應(yīng)用.
(五)作業(yè)
教材P115習(xí)題中,A組1(3),10,11,12題;A層學(xué)生多做B組3題.
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積最大的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出最大的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內(nèi)切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合.則點O為所求圓的圓心,OE為半徑.
(2)如圖3,設(shè)內(nèi)切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.
三角形的內(nèi)切圓 篇3
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標 :
1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點 :
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
(三)應(yīng)用與反思
例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內(nèi)心.
求∠BOC的度數(shù)
分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因為O是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).
解:(引導(dǎo)學(xué)生分析,寫出解題過程)
例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.
從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.
證明:連結(jié)BE.
E是△ABC的內(nèi)心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習(xí) 分析作出已知的銳角三角形、直角三角形、鈍角,并說明三角形的內(nèi)心是否都在三角形內(nèi).
(四)小結(jié)
1.教師先向?qū)W生提出問題:這節(jié)課學(xué)習(xí)了哪些概念?怎樣作已知?學(xué)習(xí)時互該注意哪些問題?
2.學(xué)生回答的基礎(chǔ)上,歸納總結(jié):
(1)學(xué)習(xí)了三角形內(nèi)切圓、三角形的內(nèi)心、圓的外切三角形、多邊形的內(nèi)切圓、圓的外切多邊形的概念.
(2)利用作三角形的內(nèi)角平分線,任意兩條角平分線的交點就是內(nèi)切圓的圓心,交點到任意一邊的距離是圓的半徑.
(3)在學(xué)習(xí)有關(guān)概念時,應(yīng)注意區(qū)別“內(nèi)”與“外”,“接”與“切”;還應(yīng)注意“連結(jié)內(nèi)心和三角形頂點”這一輔助線的添加和應(yīng)用.
(五)作業(yè)
教材P115習(xí)題中,A組1(3),10,11,12題;A層學(xué)生多做B組3題.
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積最大的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出最大的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內(nèi)切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合.則點O為所求圓的圓心,OE為半徑.
(2)如圖3,設(shè)內(nèi)切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.
三角形的內(nèi)切圓 篇4
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標:
1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
(三)應(yīng)用與反思
例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內(nèi)心.
求∠BOC的度數(shù)
分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因為O是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).
解:(引導(dǎo)學(xué)生分析,寫出解題過程)
例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.
從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.
證明:連結(jié)BE.
E是△ABC的內(nèi)心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習(xí) 分析作出已知的銳角三角形、直角三角形、鈍角,并說明三角形的內(nèi)心是否都在三角形內(nèi).
(四)小結(jié)
1.教師先向?qū)W生提出問題:這節(jié)課學(xué)習(xí)了哪些概念?怎樣作已知?學(xué)習(xí)時互該注意哪些問題?
2.學(xué)生回答的基礎(chǔ)上,歸納總結(jié):
(1)學(xué)習(xí)了三角形內(nèi)切圓、三角形的內(nèi)心、圓的外切三角形、多邊形的內(nèi)切圓、圓的外切多邊形的概念.
(2)利用作三角形的內(nèi)角平分線,任意兩條角平分線的交點就是內(nèi)切圓的圓心,交點到任意一邊的距離是圓的半徑.
(3)在學(xué)習(xí)有關(guān)概念時,應(yīng)注意區(qū)別“內(nèi)”與“外”,“接”與“切”;還應(yīng)注意“連結(jié)內(nèi)心和三角形頂點”這一輔助線的添加和應(yīng)用.
(五)作業(yè)
教材P115習(xí)題中,A組1(3),10,11,12題;A層學(xué)生多做B組3題.
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積最大的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出最大的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內(nèi)切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合.則點O為所求圓的圓心,OE為半徑.
(2)如圖3,設(shè)內(nèi)切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.
三角形的內(nèi)切圓 篇5
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標:
1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
第 1 2 頁
三角形的內(nèi)切圓 篇6
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標 :
1、使學(xué)生了解尺規(guī)作的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點 :
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
(三)應(yīng)用與反思
例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內(nèi)心.
求∠BOC的度數(shù)
分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因為O是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).
解:(引導(dǎo)學(xué)生分析,寫出解題過程)
例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.
從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.
證明:連結(jié)BE.
E是△ABC的內(nèi)心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習(xí) 分析作出已知的銳角三角形、直角三角形、鈍角,并說明三角形的內(nèi)心是否都在三角形內(nèi).
(四)小結(jié)
1.教師先向?qū)W生提出問題:這節(jié)課學(xué)習(xí)了哪些概念?怎樣作已知?學(xué)習(xí)時互該注意哪些問題?
2.學(xué)生回答的基礎(chǔ)上,歸納總結(jié):
(1)學(xué)習(xí)了三角形內(nèi)切圓、三角形的內(nèi)心、圓的外切三角形、多邊形的內(nèi)切圓、圓的外切多邊形的概念.
(2)利用作三角形的內(nèi)角平分線,任意兩條角平分線的交點就是內(nèi)切圓的圓心,交點到任意一邊的距離是圓的半徑.
(3)在學(xué)習(xí)有關(guān)概念時,應(yīng)注意區(qū)別“內(nèi)”與“外”,“接”與“切”;還應(yīng)注意“連結(jié)內(nèi)心和三角形頂點”這一輔助線的添加和應(yīng)用.
(五)作業(yè)
教材P115習(xí)題中,A組1(3),10,11,12題;A層學(xué)生多做B組3題.
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積最大的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出最大的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內(nèi)切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合.則點O為所求圓的圓心,OE為半徑.
(2)如圖3,設(shè)內(nèi)切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.
三角形的內(nèi)切圓 篇7
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì).因為它是三角形的重要概念之一.
難點:①難點是“接”與“切”的含義,學(xué)生容易混淆;②畫三角形內(nèi)切圓,學(xué)生不易畫好.
2、教學(xué)建議
本節(jié)內(nèi)容需要一個課時.
(1)在教學(xué)中,組織學(xué)生自己畫圖、類比、分析、深刻理解三角形內(nèi)切圓的概念及內(nèi)心的性質(zhì);
(2)在教學(xué)中,類比“三角形外接圓的畫圖、概念、性質(zhì)”,開展活動式教學(xué).
教學(xué)目標 :
1、使學(xué)生了解尺規(guī)作三角形的內(nèi)切圓的方法,理解三角形和多邊形的內(nèi)切圓、圓的外切三角形和圓的外切多邊形、三角形內(nèi)心的概念;
2、應(yīng)用類比的數(shù)學(xué)思想方法研究內(nèi)切圓,逐步培養(yǎng)學(xué)生的研究問題能力;
3、激發(fā)學(xué)生動手、動腦主動參與課堂教學(xué)活動.
教學(xué)重點:
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)難點 :
三角形內(nèi)切圓的作法和三角形的內(nèi)心與性質(zhì).
教學(xué)活動設(shè)計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個最大的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學(xué)生動腦筋、想辦法,使學(xué)生認識作三角形內(nèi)切圓的實際意義.
3、解決問題:
例1 作圓,使它和已知三角形的各邊都相切.
引導(dǎo)學(xué)生結(jié)合圖,寫出已知、求作,然后師生共同分析,尋找作法.
提出以下幾個問題進行討論:
①作圓的關(guān)鍵是什么?
②假設(shè)⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應(yīng)滿足什么條件?
③這樣的點I應(yīng)在什么位置?
④圓心I確定后半徑如何找.
A層學(xué)生自己用直尺圓規(guī)準確作圖,并敘述作法;B層學(xué)生在老師指導(dǎo)下完成.
完成這個題目后,啟發(fā)學(xué)生得出如下結(jié)論: 和三角形的各邊都相切的圓可以作一個且只可以作出一個.
(二)類比聯(lián)想,學(xué)習(xí)新知識.
1、概念:和三角形各邊都相切的圓叫做三角形的內(nèi)切圓,內(nèi)切圓的圓心叫做三角形的內(nèi)心,這個三角形叫做圓的外切三角形.
2、類比:
名稱
確定方法
圖形
性質(zhì)
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內(nèi)部.
內(nèi)心(三角形內(nèi)切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內(nèi)心在三角形內(nèi)部.
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內(nèi)切圓,這個多邊形叫做圓的外切多邊形.
4、概念理解:
引導(dǎo)學(xué)生理解三角形的內(nèi)切圓及圓的外切三角形的概念,并與三角形的外接圓與圓的內(nèi)接三角形概念相比較,以加深對這四個概念的理解.使學(xué)生弄清“內(nèi)”與“外”、“接”與“切”的含義.“接”與“切”是說明三角形的頂點和邊與圓的關(guān)系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”.
(三)應(yīng)用與反思
例2 如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內(nèi)心.
求∠BOC的度數(shù)
分析:要求∠BOC的度數(shù),只要求出∠OBC和∠0CB的度數(shù)之和就可,即求∠l十∠3的度數(shù).因為O是△ABC的內(nèi)心,所以O(shè)B和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的內(nèi)角和定理易求出∠BOC的度數(shù).
解:(引導(dǎo)學(xué)生分析,寫出解題過程)
例3 如圖,△ABC中,E是內(nèi)心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內(nèi)心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結(jié)BE,得出∠3=∠4.
從結(jié)論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結(jié)BE.于是得到下述法.
證明:連結(jié)BE.
E是△ABC的內(nèi)心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習(xí) 分析作出已知的銳角三角形、直角三角形、鈍角三角形的內(nèi)切圓,并說明三角形的內(nèi)心是否都在三角形內(nèi).
(四)小結(jié)
1.教師先向?qū)W生提出問題:這節(jié)課學(xué)習(xí)了哪些概念?怎樣作已知三角形的內(nèi)切圓?學(xué)習(xí)時互該注意哪些問題?
2.學(xué)生回答的基礎(chǔ)上,歸納總結(jié):
(1)學(xué)習(xí)了三角形內(nèi)切圓、三角形的內(nèi)心、圓的外切三角形、多邊形的內(nèi)切圓、圓的外切多邊形的概念.
(2)利用作三角形的內(nèi)角平分線,任意兩條角平分線的交點就是內(nèi)切圓的圓心,交點到任意一邊的距離是圓的半徑.
(3)在學(xué)習(xí)有關(guān)概念時,應(yīng)注意區(qū)別“內(nèi)”與“外”,“接”與“切”;還應(yīng)注意“連結(jié)內(nèi)心和三角形頂點”這一輔助線的添加和應(yīng)用.
(五)作業(yè)
教材P115習(xí)題中,A組1(3),10,11,12題;A層學(xué)生多做B組3題.
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積最大的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出最大的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內(nèi)切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合.則點O為所求圓的圓心,OE為半徑.
(2)如圖3,設(shè)內(nèi)切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.