切線長定理
1、教材分析(1)知識結構
(2)重點、難點分析
重點:切線長定理及其應用.因切線長定理再次體現了圓的軸對稱性,它為證實線段相等、角相等、弧相等、垂直關系等提供了理論依據,它屬于工具知識,經常應用,因此它是本節的重點.
難點:與切線長定理有關的證實和計算問題.如120頁練習題中第3題,它不僅應用切線長定理,還用到解方程組的知識,是代數與幾何的綜合題,學生往往不能很好的把知識連貫起來.
2、教法建議
本節內容需要一個課時.
(1)在教學中,組織學生自主觀察、猜想、證實,并深刻剖析切線長定理的基本圖形;對重要的結論及時總結;
(2)在教學中,以“觀察——猜想——證實——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學.
教學目標
1.理解切線長的概念,把握切線長定理;
2.通過對例題的分析,培養學生分析總結問題的習慣,提高學生綜合運用知識解題的能力,培養數形結合的思想.
3.通過對定理的猜想和證實,激發學生的學習愛好,調動學生的學習積極性,樹立科學的學習態度.
教學重點:
切線長定理是教學重點
教學難點:
切線長定理的靈活運用是教學難點
教學過程設計:
(一)觀察、猜想、證實,形成定理
1、切線長的概念.
如圖,p是⊙o外一點,pa,pb是⊙o的兩條切線,我們把線段pa,pb叫做點p到⊙o的切線長.
引導學生理解:切線和切線長是兩個不同的概念,切線是直線,不能度量;切線長是線段的長,這條線段的兩個端點分別是圓外一點和切點,可以度量.
2、觀察
利用電腦變動點p 的位置,觀察圖形的特征和各量之間的關系.
3、猜想
引導學生直觀判定,猜想圖中pa是否等于pb. pa=pb.
4、證實猜想,形成定理.
猜想是否正確。需要證實.
組織學生分析證實方法.關鍵是作出輔助線oa,ob,要證實pa=pb.
想一想:根據圖形,你還可以得到什么結論?
∠opa=∠opb(如圖)等.
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角.
5、歸納:
把前面所學的切線的5條性質與切線長定理一起歸納切線的性質
6、切線長定理的基本圖形研究
如圖,pa,pb是⊙o的兩條切線,a,b為切點.直線op交⊙o于點d,e,交ap于c
(1)寫出圖中所有的垂直關系;
(2)寫出圖中所有的全等三角形;
(3)寫出圖中所有的相似三角形;
(4)寫出圖中所有的等腰三角形.
說明:對基本圖形的深刻研究和熟悉是在學習幾何中關鍵,它是靈活應用知識的基礎.