分組分解法
教學(xué)目標(biāo)
1.使學(xué)生掌握分組后能運(yùn)用提公因式和公式法把多項(xiàng)式分解因式;
2.通過(guò)因式分解的綜合題的教學(xué),提高學(xué)生綜合運(yùn)用知識(shí)的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):在中,提公因式法和分式法的綜合運(yùn)用.
難點(diǎn):靈活運(yùn)用已學(xué)過(guò)的因式分解的各種方法.
教學(xué)過(guò)程設(shè)計(jì)
一、復(fù)習(xí)
把下列各式分解因式,并說(shuō)明運(yùn)用了中的什么方法.
(1)a2-ab+3b-3a; (2)x2-6xy+9y2-1;
(3)am-an-m2+n2; (4)2ab-a2-b2+c2.
解 (1) a2-ab+3b-3a
=(a2-ab)-(3a-3b)
=a(a-b)-3(a-b)
=(a-b)(a-3);
(2)x2-6xy+9y2-1
=(x-3y) 2-1
=(x-3y+1)(x-3y-1);
(3)am-an-m2+n2
=(am-an)-(m2-n2)
=a(m-n)-(m+n)(m-n)
=(m-n)(a-m-n);
(4)2ab-a2-b2+c2
=c2-(a2+b2-2ab)
=c2-(a-b) 2
=(c+a-b)(c-a+b).
第(1)題分組后,兩組各提取公因式,兩組之間繼續(xù)提取公因式.
第(2)題把前三項(xiàng)分為一組,利用完全平方公式分解因式,再與第四項(xiàng)運(yùn)用平方差公式
繼續(xù)分解因式.
第(3)題把前兩項(xiàng)分為一組,提取公因式,后兩項(xiàng)分為一組,用平方差公式分解因式,然后兩組之間再提取公因式.
第(4)題把第一、二、三項(xiàng)分為一組,提出一個(gè)“-”號(hào),利用完全平方公式分解因式
,第四項(xiàng)與這一組再運(yùn)用平方差公式分解因式.
把含有四項(xiàng)的多項(xiàng)式進(jìn)行因式分解時(shí),先根據(jù)所給的多項(xiàng)式的特點(diǎn)恰當(dāng)分解,再運(yùn)
用提公因式或分式法進(jìn)行因式分解.在添括號(hào)時(shí),要注意符號(hào)的變化.
這節(jié)課我們就來(lái)討論應(yīng)用所學(xué)過(guò)的各種因式分解的方法把一個(gè)多項(xiàng)式分解因式.
二、新課
例1 把 分解因式.
問(wèn):根據(jù)這個(gè)多項(xiàng)式的特點(diǎn)怎樣分組才能達(dá)到因式分解的目的?
答:這個(gè)多項(xiàng)式共有四項(xiàng),可以把其中的兩項(xiàng)分為一組,所以有兩種分解因式的方法.
解 方法一
方法二
;
例2 把分解因式.
問(wèn):觀察這個(gè)多項(xiàng)式有什么特點(diǎn)?是否可以直接運(yùn)用分組法進(jìn)行因式分解?
答:這個(gè)多項(xiàng)式的各項(xiàng)都有公式因ab,可以先提取這個(gè)公因式,再設(shè)法運(yùn)用分組法繼續(xù)分解因式.
解:
=
=
=
=
例3 把45m2-20ax2+20axy-5ay2分解因式.
分析:這個(gè)多項(xiàng)式的各項(xiàng)有公因式5a,先提取公因式,再觀察余下的因式,可以按:一、三”分組原則進(jìn)行分組,然后運(yùn)用公式法分解因式.
解 45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)
=5a[9m2-(4x2-4xy+y2)]
=5a[(3m2)-(2x-y) 2]
=5a(3m+2x-y)(3m-2x+y).
例4 把2(a2-3mn)+a(4m-3n)分解因式.
分析:如果去掉多項(xiàng)式的括號(hào),再恰當(dāng)分組,就可用分解因式了.
解 2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an
=(2a2-3an)+(4am-6mn)
=a(2a-3n)+2m(2a-3n)
=(2a-3n)(a+2m).
指出:如果給出的多項(xiàng)式中有因式乘積,這時(shí)可先進(jìn)行乘法運(yùn)算,把變形后的多項(xiàng)式按照分組原則,用分解因式.
第 1 2 頁(yè)