函數單調性與奇偶性
函數的奇偶性教學設計方案
教學目標
1.使學生了解奇偶性的概念,回 會利用定義判定簡單函數的奇偶性.
2.在奇偶性概念形成過程中,培養學生的觀察,歸納能力,同時滲透數形結合和非凡到一般的思想方法.
3.在學生感受數學美的同時,激發學習的愛好,培養學生樂于求索的精神.
教學重點,難點
重點是奇偶性概念的形成與函數奇偶性的判定
難點是對概念的熟悉
教學用具
投影儀,計算機
教學方法
引導發現法
教學過程
一. 引入新課
前面我們已經研究了函數的單調性
,它是反映函數在某一個區間上函數值隨自變量變化而變化的性質,今天我們繼續研究函數的另一個性質.從什么角度呢?將從對稱的角度來研究函數的性質.
對稱我們大家都很熟悉,在生活中有很多對稱,在數學中也能發現很多對稱的問題,大家回憶一下在我們所學的內容中,非凡是函數中有沒有對稱問題呢?
(學生可能會舉出一些數值上的對稱問題, 等,也可能會舉出一些圖象的對稱問題,此時教師可以引導學生把函數具體化,如 和 等.)
結合圖象提出這些對稱是我們在初中研究的關于 軸對稱和關于原點對稱問題,而我們還曾研究過關于 軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數圖象關于 軸對稱的嗎?
學生經過思考,能找出原因,由于函數是映射,一個 只能對一個 ,而不能有兩個不同的,故函數的圖象不可能關于 軸對稱.最終提出我們今天將重點研究圖象關于 軸對稱和關于原點對稱的問題,從形的特征中找出它們在數值上的規律.
二. 講解新課
2.函數的奇偶性(板書)
教師從剛才的圖象中選出 ,用計算機打出,指出這是關于 軸對稱的圖象,然后問學生初中是怎樣判定圖象關于 軸對稱呢?(由學生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數值角度研究圖象的這種特征體現在自變量與函數值之間有何規律?
學生開始可能只會用語言去描述:自變量互為相反數,函數值相等.教師可引導學生先把它們具體化,再用數學符號表示.(借助課件演示令 比較 得出等式 ,再令 ,得到 ,詳見課件的使用)進而再提出會不會在定義域內存在 ,使 與 不等呢?(可用課件幫助演示讓 動起來觀察,發現結論,這樣的 是不存在的)
從這個結論中就可以發現對定義域內任意一個 ,都有 成立.最后讓學生用完整的語言給出定義,不準確的地方教師予以提示或調整.
(1) 偶函數的定義:假如對于函數 的定義域內任意一個 ,都有 ,那么 就叫做偶函數.(板書)
(給出定義后可讓學生舉幾個例子,如 等以檢驗一下對概念的初步熟悉)
提出新問題:函數圖象關于原點對稱,它的自變量與函數值之間的數值規律是什么呢?(同時打出 或 的圖象讓學生觀察研究)