中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 教案模板 > 北師大版小學六年級下冊數學《圓柱的體積》教案(精選13篇)

北師大版小學六年級下冊數學《圓柱的體積》教案

發布時間:2023-09-04

北師大版小學六年級下冊數學《圓柱的體積》教案(精選13篇)

北師大版小學六年級下冊數學《圓柱的體積》教案 篇1

  教學內容:北師大版數學六年級下冊5——6頁。

  教學目標:

  1、使學生理解圓柱側面積和圓柱表面積的含義,掌握圓柱側面積和表面積的計算方法。

  2、根據圓柱表面積和側面積的關系,使學生學會運用所學的知識解決簡單的實際問題。

  教學重點:目標1。

  教學難點:目標2。

  教學過程:

  活動一:復習舊知,鞏固學過的公式。

  1、一個直徑是100毫米的圓,求周長。

  2、一個半徑3厘米的圓,求周長和面積。

  3、一個長為3米,寬為2米的長方形,它的面積是多少?

  4、出示圓柱體的模型,說說它有什么特征?

  活動二;探究新知。

  1、做一個圓柱形紙盒,至少需要多大面積的紙板?(接口處不計)

  要解決這個問題,就是求什么?

  2、圓柱的表面積包括哪幾部分?

  3、圓柱的表面積的計算關鍵在哪一部分?

  4、探索圓柱側面積的計算方法。

  1)圓柱的側面展開后是一個怎樣的圖形呢?用一張長方形的紙,可以卷成圓柱形。

  2)圓柱側面展開圖的長和寬與這個圓柱有什么關系?怎樣求圓柱的側面積呢?

  3)師;圓柱的側面積就是求長方形的面積。用長乘寬。

  4)長就是圓柱的底面圓的周長,寬就是圓柱的高。

  5)請你來總結一下圓柱側面積的計算方法。

  6)圓柱的側面積用2∏rh,求圓柱的表面積要用側面積加兩個底面積。

  活動三:新知識的運用。

  1、求底面半徑是10厘米,高30厘米的圓柱的表面積。

  2、教師板書:

  側面積:2╳3.14╳10╳30=1884(平方厘米)

  底面積:3.14╳10╳10=314(平方厘米)

  表面積:1884+314╳2=2512(平方厘米)

  要求按步驟進行書寫。

  2、試一試。

  做一個無蓋的圓柱形鐵皮水桶,底面直徑圍分米,高為5分米,至少需要多大面積的鐵皮?

  求至少需要多少鐵皮,就是求水桶的表面積。

  這道題要注意什么?無蓋就只算一個底面。這種題如果求整數,一般用進一法。

  3、練一練。書第6頁第1題。

  3個小題:已知底面直徑或底面周長和高,求圓柱的表面積。重點討論:已知底面周長,求表面積。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇2

  教學內容:

  北師大版教學六年級《圓柱的體積》

  教學目標:

  1、結合具體的情境和實踐活動,理解圓柱體體積的含義。

  2、經歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3、培養學生初步的空間觀念和思維能力;

  教學重點:

  理解和掌握圓柱的體積計算公式,會求圓柱的體積。

  教學難點:

  理解圓柱體積計算公式的推導過程。

  教具準備:

  圓柱體積演示教具。

  教學過程:

  一、舊知鋪墊

  1、談話引入

  最近我們認識了圓柱和圓錐,還學會了計算圓柱的表面積。現在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)

  2、提出問題:什么叫體積?我們學過那些圖形的體積?怎么算的?(生答師隨之板書)

  這節課我們就來學習圓柱的體積。

  二、自主探究,解決問題

  (一)認識圓柱體積的意義。

  圓柱的體積到底是指什么?誰能舉例說呢?

  (二)圓柱體積的計算公式的推導。

  1、我們學過長方體和正方體體積的計算,圓柱體的體積跟什么有關呢?你會有怎樣的猜想?(小組內說說)

  2、回憶圓面積的推導過程。

  3、教具演示。

  (1)取圓柱體模型。

  (2)將圓柱體切成兩半。

  (3)分別將兩半均分成若干小塊。

  (4)動手拼成一個近似的長方體。

  (三)歸納公式。

  (板書:圓柱的體積=底面積×高)

  用字母表示:(板書:V=Sh)

  三、鞏固新知

  1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?

  審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。

  現在這個杯子裝了2/3的水,裝了多少水呢?

  2、完成“試一試”

  3、“跳一跳”:統一直柱體的體積的計算方法。

  四、課堂總結、拓展延伸

  這節課學習了什么內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點?

  五、布置作業

  練一練1-5題。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇3

  教學目標:

  1、了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。

  2、經歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3、培養初步的空間觀念和思維能力;進一步認識“轉化”的思考方法。

  教學重點:

  理解和掌握圓柱的體積計算公式,會求圓柱的體積

  教學難點:

  理解圓柱體積計算公式的推導過程。

  教學用具:

  圓柱體積演示教具。

  教學過程:

  一、復述回顧,導入新課

  以2人小組回顧下列內容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)

  1、說一說:(1)什么叫體積?常用的體積單位有哪些?

  (2)長方體、正方體的體積怎樣計算?如何用字母表示?

  長方體、正方體的體積=( )×( ) 用字母表示( )

  2、求下面各圓的面積(只說出解題思路,不計算。)

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  (二)揭示課題

  你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學習“圓柱的體積”。(板書課題)

  二、設問導讀

  請仔細閱讀課本第8-9頁的內容,完成下面問題

  (一)以小組合作完成1、2題。

  1、猜一猜 ,圓柱的體積可能等于( )×( )

  2、我們在學習圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉化成一個近似的長方形,通過切、拼的方法,把圓柱轉化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關系

  (1)圓柱的底面積變成了長方體的( )。

  (2)圓柱的高變成了長方體的( )。

  (3)圓柱轉化成長方體后,體積沒變。因為長方體的體積=( )×( ),所以圓柱的體積=( )×( )。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為( )

  [匯報交流,教師用教具演示講解2題]

  (二)獨立完成3、4題。

  3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?

  先求底面積,列式計算( )

  再求體積,列式計算( )

  綜合算式( )

  4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“( )×( )”(杯子厚度忽略不計)

  【要求:完成之后以小組互查,有爭議之處四人大組討論。】

  教師根據學生做題情況挑選一些小組進行匯報、交流,并對小組學習情況進行評價。

  三、自我檢測

  1、課本9頁試一試

  2、課本9頁練一練1題(只列式,不計算)

  【要求:完成后小組互查,教師評價】

  四、鞏固練習

  課本練一練的2、3、4題

  【要求:組長先給組員講解題思路,然后小組內共同完成】

  教師進行錯例分析。

  五、拓展練習

  1、課本練一練的5題

  2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?

  【要求:先組內討論確定解題思路,再完成】

  六、課堂總結,布置作業

  1、總結:這節我們利用轉化的方法,把圓柱轉化為長方體來推導其體積公式,切記用“底面積×高”來求圓柱的體積。

  2、作業:課本練一練6題

北師大版小學六年級下冊數學《圓柱的體積》教案 篇4

  圓柱的體積

  教學內容:p19-20頁例5、例6及補充例題,完成“做一做”及練習三第1~4題。

  教學目標:

  1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數學思想和方法,解決實際問題的能力

  1、滲透轉化思想,培養學生的自主探索意識。

  教學重點:掌握圓柱體積的計算公式。

  教學難點:圓柱體積的計算公式的推導。

  教學過程:

  一、復習

  1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。

  3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導。

  (1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)

  (2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)

  (3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,v=sh)

  2、教學補充例題

  (1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

  (2)指名學生分別回答下面的問題: 

  ① 這道題已知什么?求什么?

  ② 能不能根據公式直接計算?

  ③ 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統一計量單位)

  (3)出示下面幾種解答方案,讓學生判斷哪個是正確的.

  ①v=sh

  50×2.1=105(立方厘米)

  答:它的體積是105立方厘米。

  ②2.1米=210厘米

  v=sh

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米。

  ③50平方厘米=0.5平方米

  v=sh

  0.5×2.1=1.05(立方米)

  答:它的體積是1.05立方米。

  ④50平方厘米=0.005平方米

  v=sh

  0.005×2.1=0.0105(立方米)

  答:它的體積是0.0105立方米。

  先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.

  (4)做第20頁的“做一做”。

  學生獨立做在練習本上,做完后集體訂正.

  3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(v=πr2h)

  4、教學例6

  (1)出示例5,并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應先知道杯子的容積)

  (2)學生嘗試完成例6。

  ① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)

  5、比較一下補充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應用公式計算;例6只知道底面直徑,要先求底面積,再求體積.)

  三、鞏固練習

  1、做第21頁練習三的第1題.

  2、練習三的第2題.

  這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。

  四、布置作業

  練習三第3、4題。

  板書:

  圓柱的體積=底面積×高     v=sh或v=πr2h

  例6:① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)

北師大版小學六年級下冊數學《圓柱的體積》教案 篇5

  學習目標

  1.使學生理解和掌握圓柱的體積計算公式,并能根據題里的條件正確地求出圓柱的體積。

  2. 培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。

  學習重點 理解和掌握圓柱的體積計算公式

  學習難點 圓柱體積計算公式的推導。

  一、溫故知新

  1、什么是體積?(                                     )2.長方體的體積=(              )字母公式:

  或長方體的體積=(              )字母公式:

  3、圓的面積=(              )字母公式:

  4. 圓是把圓面積轉化成近似的長方形面積進行計算的。圓的面積是怎樣推倒得來的?

  圓分割成若干等分,拼成近似的長方形,它的長等于圓的(            ),長方形的等于圓的(    ),長方形的面積等于(          ),所以圓的面積等于(               )。

  二、自主學習 

  1.計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?

  2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?(         )

  3、思考: 1)通過實驗你發現了什么?

  *拼成的近似長方體(    )沒變,(     )變了。

  *拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似(      ),(        )的大小沒有改變。

  *近似長方形的高就是圓柱的(     ).

  2)推導圓柱體積公式。怎樣計算圓柱的體積?

  長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的(   ),高就是圓柱的(  ),所以圓柱的體積也可以用(         )乘(    )來計算。

  用字母表示:(                  )

  4補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

  ①已知(                             )求(             )    

  ② 能不能根據公式直接計算?(    )因為(                  )

  ③ 計算之前要注意什么?

  計算時既要分析題目中的(               ),還要注意先統一(   )。

  ④解出此題,代公式計算。

  3、完成第20頁的“做一做”。

  4、思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?______________

  5、自學p20例6,,

  6、比較一下補充例題與例6有哪些相同的地方和不同的地方?

  7、做書上21頁1題。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇6

  各位領導、老師、同學們:大家好,今天我講課的題目是《圓柱的體積》

  圓柱的體積是本單元的教學重點。在此之前,學生已經學過了圓面積公式的推導,對轉化的思想方法和“等積變形”已有所了解;長方體、正方體的體積公式是本節課的舊知停靠點;而這節課的順利學習將為以后圓錐體積的學習鋪平道路。從能力培養方面來看,本節課的內容有利于發展學生的空間觀念,培養學生的邏輯推理能力,在公式推導過程中,還可以培養學生猜想、類推、對應的數學思想和方法。另外,就情感的角度而言,通過學生體驗探索數學奧秘的過程,可以培養學生對數學學習的興趣和探索精神。

  由此,預設以下教學目標:

  1、使學生經歷用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式的過程,使學生能總結和理解圓柱的體積公式,能夠運用公式正確的計算圓柱的體積。

  2、培養學生觀察、猜測、分析、比較、綜合的學習思考方法。

  3、滲透轉化、等積變形、極限的數學思想。

  4、通過學生體驗圓柱體積公式的推導過程,讓學生感受探索數學奧秘的樂趣,培養學生學習數學的積極情感;

  圓柱的體積公式推導過程可以培養學生多方面的能力,這個過程對學生是否真正理解圓柱體積公式起著至關重要的作用,因此我把圓柱的體積公式推導過程做為本節課的教學重點;而學生的思維是以具體形象思維為主,逐步向抽象邏輯思維過渡,在圓柱體積公式的推導過程中,要用到等積變形、對應、以及邏輯推理的知識,學生理解起來可能會有點困難,所以我認為圓柱的體積公式推導過程也是本節課的教學難點。

  本節課要采用的教學方法有:演示法、提問法等,在學習過程中要用到的方法有:觀察法、思考法等。

  教學用具:圓柱模型,裝水的杯子等

  這節課主要有五大環節

  一、實驗引入

  師:我們來觀察一個現象,把小圓柱放入水里,看看有什么變化

  生:變了變了,水面上升了.

  師:水面為什么上升

  生: 小圓柱浸沒在水中,將水擠壓上升,求小圓柱的體積也就是求上升水面的體積,即圓柱體積.

  師:你們想不想知道圓柱體積怎樣計算

  生齊答:想.

  師:今天我們就一起來研究圓柱體積的計算方法.(板書:圓柱的體積)

  二、探究新知

  師:出示課件,根據課件演示逐步推導出圓柱體的體積計算方法

  長方體的體積=底面積高

  | |

  圓柱體的體積=底面積高

  v = s h

  三、,運用新知,解決問題

  出示例1:一根圓柱形鋼材,底面積是50平方厘米,高是210厘米,它的體積是多少

  師:咱們大家理解自己推導的圓柱體的體積公式了嗎 下面我們

  50210=10500(cm3)

  答:圓柱形鋼材體積為10500cm3

  四、鞏固運用

  1,填表:請同學看屏幕回答下面問題,誰想好了誰就站起來說.

  底面積(m2) 15 6.4 0.05

  高(m) 3 4 2

  圓柱體積(m3)

  五、總結評價

  師:今天我們學習了圓柱體積的推導方法及計算公式.

  板書設計:

  圓柱的體積

  v= s h

  例4:一根圓柱形鋼材,底面積是50平方厘米,

  高是210厘米,它的體積是多少

  50210=10500(cm)

  答:圓柱形鋼材體積為10500立方厘米。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇7

  一、教學目標:

  1.結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2.讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。

  3.通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

  二、教學重難點:

  掌握和運用圓柱體積計算公式, 圓柱體積公式的推導過程。

  三、教學方法:

  從生活情境入手,通過組織猜測、操作、交流等數學活動,使學生經歷“做數學”的過程,鼓勵學生獨立思考,引導學生自主探索、合作交流,讓學生根據已有的知識經驗創造性地建構圓柱體積計算公式,鼓勵解決問題策略的多樣化,讓學生的思維得到發展,創新精神、實踐能力得到提高。

  四、教學步驟

  (一)創設情景 提出問題情境引入:

  某玩具廠廠長,他們廠新近開發了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學們有什么方法?

  (二)動手實驗, 探索公式

  1.觀察、比較,建立猜想引導生觀察例4中的三個幾何體,提問:

  (1)長方體、正方體的體積相等嗎?為什么?

  (板書:長方體的體積=底面積×高)

  (2)圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關系?

  2.實驗操作,驗證猜想讓學生自主探究(材料:圓柱體插拼教學具、師準備課件),想辦法驗證圓柱的體積與長方體、正方體的體積相等。

  教師提示:你能想辦法把圓柱轉化成長方體嗎?圓是如何轉化成長方形的?可以模仿這樣的方法來轉化。

  (1)小組合作研究怎樣將圓柱體轉化成一個長方體

  (2)小組代表匯報,全班交流

  (學生按照自己的方式來轉化,會有多種轉化方法,教師適時加以鼓勵)

  演示操作

  a請一名學生演示用切插拼的方法把圓柱體轉化成長方體。其他學生模仿操作。

  b思考:這是一個標準的長方體嗎?為什么?如果分割得份數越多,你會有什么發現?

  c電腦演示圓柱體轉化成長方體的過程(從16等份到32等份再到64等份)

  3.觀察比較,推導公式

  a圓柱體轉化成長方體后,什么變了,什么沒有變?

  b 根據學生的觀察、分析、推想,老師完成板書:

  長方體的體積=底面積×高

  圓柱的體積 = 底面積×高

  d小結:要想求出一個圓柱的體積,需要知道什么條件?

  e學生自學第8頁例4上面的一段話:用字母表示公式。

  學生反饋自學情況,師板書公式:v=sh

  (三)鞏固練習, 拓展應用

  1.出示第26頁試一試,學生理解題意,獨立完成。集體訂正,說一說每一步列式的根據是什么?使學生明確應用體積公式求圓柱的體積一般需要兩個條件,即底面積和高。

  2.完成第26頁的“練一練”的第1題。

  先看圖說說每個圓柱中的已知條件,再各自計算,計算后,說一說計算的過程,強調:計算圓柱體的體積要先算出底面積。

  3.完成第26頁的“練一練”的第2題。

  讀題后強調說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。

  4、把直尺繞著它的一條邊旋轉一圈得到了一個什么圖形?它的體積你會計算嗎?

  (四)總結回顧 評價反思

  這節課你學會了什么?你是怎樣學會的?

  五、板書設計:

  圓柱的體積

  切拼成的長方體的體積等于圓柱的體積,長方體的底面積就相當于圓柱的底面積,長方體的高就相當于圓柱的高。

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  字母表示:V=Sh=πrh2

北師大版小學六年級下冊數學《圓柱的體積》教案 篇8

  1、在推導圓柱體積計算公式的過程中通過觀察,大膽猜想和驗證獲得新知識;

  2、培養空間觀念和動手操作的技能,發展推理能力,滲透轉化思想。

  3、積極參與數學學習活動,培養數學意識和合作意識。

  學習重難點:圓柱體積的推導過程

  學具準備:   圓柱

  學習過程:

  一、自主學習

  1、自學課本8頁。完成下列各題。

  (思考一分鐘,然后將你的想法與大家分享)

  怎樣計算圓柱的體積呢?試一試能不能把圓柱轉化為我們學過的立體圖形,來計算它的體積?(溫馨提示:想一想,圓的面積公式是怎么推導出來的?)

  2、教師點撥:

  圓柱的底面是   形,可以分成許多相等的   形,然后再把圓柱按照這些扇形,沿   切開,拼起來,就近似一個       體。平均分的份數越多(所分的份數必須是偶數),拼起來的整個形體就越近似于一個         體。長方體的體積= (          ) 因此:圓柱體的體積=                                     

  如果用v表示圓柱的體積,用s表示圓柱的底面積,用h表示圓柱的高,圓柱的體積公式用字母表示為:                     

  溫馨提示:在計算過程中,有的并不是直接給出圓柱的底面積,而是給出底面半徑或直徑,我們應先求出        ,再求圓柱的體積。計算公式是:v=                    或               。

  二、合作探究  填一填:

  (小組合作完成下列各題,一組展示,其余補充、評價)

  1、一個圓柱體,底面積是12平方分米,高6分米,它的體積是(    )立方分米。

  2、一個圓柱體積是84立方厘米,底面積21平方厘米,高是(      )。

  3、已知圓柱谷桶里底面半徑是3米,高4米,它的底面積是(       ),容積是(          )  立方米。

  4. 一個圓柱體底面半徑是4分米,當高是(    )分米時,它的體積是62.8立方分米。

  5. 一個圓柱的底面周長是18.84分米,高是5分米,它的側面積是(     )平方分米,體積是(    )立方分米。

  三、學以致用  判斷:(先獨立完成,再在小組內交流)

  1.正方體的表面積是6平方厘米,它的體積一定是6立方厘米.(  )

  2.所有圓的直徑都相等.(  )

  3.求一個水桶能裝多少水,是求水桶的體積。 ( )

  4.求正方體、長方體、圓柱體的體積都可以用公式∶體積=底面積高。( )

  四、自我挑戰臺 闖關隨我來,紅星等你摘

  第一關   基礎知識面對面2顆紅星等你摘  ★★

  1、一個圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

  2、一個蓄水池是圓柱形的,從里面量,底面面積為31.4平方分米,高為2.8分米,這個水池能容多少升水?

  恭喜你輕松闖過第一關,請摘紅星★★(     )顆。

  第二關 基本技能現場演4顆紅星等你摘★★★★

  1、一個圓柱形水桶的體積是24立方分米,底面積是6平方分米,桶內裝滿了水,求水面高是多少分米?(水桶鐵皮厚度忽略不計。)

  2、有一個高為6.28分米的圓柱體的機件,它的側面積展開正好是一個正方形,求這個機件的體積.

  恭喜你順利闖過第二關,請摘紅星(     )顆。

  第三關  綜合能力展示臺  6顆紅星等你摘★★★★★★

  5、把一根長1.5米的圓柱形鋼材截成三段后,表面積比原來增加9.6平方分米,這根鋼材原來的體積是多少?

  6、.一段圓柱形的鋼材。長60厘米。橫截面直徑10厘米。每立方厘米鋼重7.8克,這段鋼材重多少千克?(得數保留一位小數)

  佩服你勇闖第三關,請摘紅星(     )顆。

  通過連闖三關,你共摘取紅星(      )顆,把你的收獲寫下來吧。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇9

  【教材簡析】:

  本節內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。

  【教學內容】:

  p19-20頁的內容和例題,完成“做一做”及練習三第1~4題。

  【教學目標】:

  1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公 式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數學思想和方法,解決實際問題的能力

  3、滲透轉化思想,培養學生的自主探索意識。

  【教學重點】:掌握圓柱體積的計算公式。

  【教學難點】:圓柱體積的計算公式的推導。

  【教學過程】:

  第一課時          本冊總課時:12課時

  一、復習

  1、長方體的體積公式是什么?(長方體的體積=長寬高,長方體和正方體體積的統一公式“底面積高”,即長方體的體積=底面積高)

  2、什么叫做物體的體積?你會計算下面那些圖形的體積?

  3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。

  4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導。

  (1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個近似長方體的立體圖形——課件演示)

  (2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)

  (1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)

  (2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)

  (3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)

  (3)通過觀察,使學生明確:

  長方體的底面積等于圓柱的底面積,

  長方體的高就是圓柱的高。

  長方體的體積=底面積高,

  所以圓柱的體積=底面積高,

  v =  s   h

  圓柱的體積計算公式是:

  v=s h

  2、課堂練習:

  (1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?

  (2)指名學生分別回答下面的問題:

  ① 這道題已知什么?求什么?

  ② 能不能根據公式直接計算?

  ③ 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統一計量單位)

  (3)讓學生解答和板算,最后師生共同完成.

  解:v=sh

  =7590

  =675(立方厘米)

  答:它的體積是675立方厘米。

  3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的vπ r²h

  4.作業:

北師大版小學六年級下冊數學《圓柱的體積》教案 篇10

  教學目標:

  1.知識與技能:運用遷移規律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

  2.方法與過程:經歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導過程。

  3情感、態度、價值觀:創設情境,激發學生學習的積極性。讓學生在主動學習的基礎上,逐步學會轉化的數學思想和數學法,培養學生解決實際問題的能力和培養學生抽象、概括的思維能力。

  教學重點和難點:

  圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

  教 具:

  圓柱的體積公式演示教具,圓柱的體積公式演示課件

  教學過程:

  一、教學回顧

  1、交代任務:這節課我們來學習《圓柱的體積》。

  2、回憶導入

  (1)、請大家想一想,我們在學習圓的面積時,是怎樣把圓變成已學過的圖形再計算面積的?

  (2)、我們都學過那些立體圖形的體積公式。

  二、積極參與 探究感受

  1、猜測圓柱的體積和那些條件有關。(電腦演示)

  2、.探究推導圓柱的體積計算公式。

  小組合作討論:

  (1)將圓柱體切割拼成我們學過的什么立體圖形?

  (2)切拼前后的兩個物體什么變了?什么沒變?

  (3)切拼前后的兩個物體有什么聯系?

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。

  ①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

  ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內容。)

  ③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

  3、要用這個公式計算圓柱的體積必須知道什么條件?

  三、練習

  1、填空

  (1)、圓柱體通過切拼轉化成近似的 ( ) 體。這個長方體的底面積等于圓柱體的( ),這個長方體的高等于圓柱體 。因為長方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示 。

  (2)、底面積是 10平方米,高是2米,體積是( )。

  (3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:

  (1)已知圓柱底面的半徑和高,怎樣求圓柱的體積

  V= 兀r2× h

  (2)已知圓柱底面的直徑和高,怎樣求圓柱的體積

  V=兀(d÷2)2×h

  (3)已知圓柱底面的周長和高,怎樣求圓柱的體積

  V=兀(C÷兀÷2) ×h

  3、練習:已知半徑和高求體積,已知直徑和高求體積。

  四、小結或質疑

  五、作業

  板書設計:

  圓柱的體積

  長方體的體積=底面積x高

  圓柱的體積=底面積x高

  V=Sh

北師大版小學六年級下冊數學《圓柱的體積》教案 篇11

  最近,本人在《小學教學設計》看到一則“圓柱的體積”教學實錄精彩片段,它以一種全新的視角詮釋了新課標所倡導的理念,給我留下了較為深刻的印象。現把它擷取下來與各位同行共賞。

  ……

  師:圓柱有大有小,你覺得圓柱體積應該怎樣計算呢?

  生:(絕大部分學生舉起了手)底面積乘高。

  師:那你們是怎樣理解這個計算方法的呢?

  生1:我是從書上看到的。

  (舉起的手放下了一大半。很明顯,大部分同學都看到或聽到這個結論,并不理解實質的涵義。但仍有幾位學生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順水推舟,讓他們來講。)

  生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計算,所以我想計算圓柱體的體積時也應該可以用底面積乘高吧!

  師:你能迅速地把圓柱體與以前學過的長方體、正方體聯系起來,進而聯想到圓柱體的體積計算方法。真行!當然這僅是你的猜測,要是再能證明就好了。

  生3:我可以證明。推導長方體體積公式時,我們是采用擺體積單位的方法,用每層個數(底面積)×層數(高)現在求圓柱體積我們也可以沿襲這種思路,在圓柱體內部同樣擺上合適的體積單位,用每層個數×層數,每層的個數也就是它的底面積,擺的層數也就是高。那不就證明了圓柱體積的計算公式就是用底面積乘高嗎?

  (教室里立刻響起了熱烈的掌聲,許多同學被他精彩的發言折服了,理性的思維散發出誘人的魅力。)

  師:你真聰明,能用以前學過的知識解決今天的難題!(這時舉起的手更多了。)

  生4:我有個想法不知是否可行、在推導圓面積計算方法時,我們是把圓轉化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉化成長方體呢?

  師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。

  生5:我還有一種想法:我們可以把圓柱體看成是無數個同樣大小的圓片疊加而成的。那么圓柱體的體積就應該用每個圓片的面積×圓的個數。圓的個數也就相當于圓柱的高。所以我認為圓柱體的體積可以用每個圓的面積(底面積)×高。

  師:了不起的一種想法!(師情不自禁的鼓起了掌。)

  生6:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么扎成的近似圓柱體的體積應該是這二十個小長方體的體積之和。又因為它們具有同樣的高度,運用乘法分配律,就變成了這二十個小長方體的底面積之和×高。

  師:你真會思考問題!

  生7:我還有一種想法:學習圓的面積時我們知道,當圓的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎上再乘3.14,也就是用圓柱體的底面積×高。

  生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計算,所以計算圓柱體的體積也是用底面積乘高吧!

  師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!

  ……

  整節課不時響起孩子們、聽課老師們熱烈的掌聲。

  過去的數學課堂教學,忠誠于學科,卻背棄了學生,體現著權利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標理念下的不再是教師一廂情愿的“獨白”,而是學生、數學材料、教師之間進行的一次次真情的“對話”。

  現從“對話”的視角來賞析這則精彩的片段。

  一、“對話”喚發出學習熱情。

  《新課程標準》指出:有意義的數學學習必須建立在學生的主觀愿望和知識經驗的基礎上,在這樣的氛圍中,學生的思考才能積極。在當今數字化、信息化非常發達的社會中,學生接受信息獲取知識的途徑非常多,圓柱體的體積計算方法對學生來說并不陌生,如果教師再按傳統的教學程序(創設情境——研究探討——獲得結論)展開,學生易造成這樣的錯誤認識:認為自己已經掌握了這部分知識而失去對學習過程的熱情。而本課,教學伊始,教師提問“圓柱體的體積如何計算”,讓學生先行呈現已有的知識結論,在通過問題“你是怎樣理解這個公式的呢?”把學生的注意引向對公式意義的理解,學生積極主動的投入思維活動,喚發學習熱情。

  二、“對話”迸發出智慧的火花

  “水本無華,相蕩而生漣漪;石本無火,相擊始發靈光。”思維的激活、靈性的噴發源于對話的啟迪和碰撞。本課如果按照教材的設計:通過把圓柱體轉化為長方體,研究圓柱體和長方體間的關系,得出計算公式:底面積×高,經歷這樣的學習過程學生的思維是千篇一律的,獲得的發展也是有限的。而這位教師對教材進行相應的拓展,先呈現公式,后提問“你是怎樣理解這個公式的呢?”,使學生的思維沿著各自獨特的理解“決堤而出”。

  三、“對話”贏得心靈的敞亮和溝通

  “真行!當然這僅是你的猜測,要是再能證明就好了。”“你真聰明!能用以前學過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。”……教師不斷地肯定著學生的每一種觀點,引燃學生的每一絲發現的火花;同時象一位節目主持人一樣,平和、真誠,傾聽、接納著學生的聲音,在課堂上,學生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學生交流,注意尋求學生的聲音,讓學生在一種“零距離”的、活躍的心理狀態下敞亮心扉,放飛思想,進行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。

  數學教學在對話中進行,展示著民主與平等,凸現著創造與生成。有效的對話中不僅有信息的傳輸,更有思維的升華;不僅能增進學生的理解,更能促進教師的反思;不僅有繼承的喜悅,更有創造的激情。這則教學片斷,有很多的精彩值得我們欣賞與贊嘆。我想說:我的內心很受鼓舞,我會向這位老師學習,讓自己的課堂也能成就精彩的時刻!

北師大版小學六年級下冊數學《圓柱的體積》教案 篇12

  教學目標

  1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,使學生理解圓柱的體積公式的推導過程能夠運用公式正確地計算圓柱的體積。

  2、過程與方法:讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究法。

  3、情感態度與價值觀:通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

  教學重點:

  掌握和運用圓柱體積計算公式進行正確計算。

  教學難點:

  理解圓柱體積計算公式的推導過程,體會“轉化”方法的價值。

  教學過程

  一、情景導入:

  1、教師:(出示課件)多么溫馨的場面,今天是亮亮和爺爺的生日,幸福的一家人圍坐在飯桌前享用著美酒佳肴,你能觀察到今天的飯菜比平時多了什么嗎?

  學生:1、比平日多了兩個蛋糕。

  2、兩個蛋糕一個大一個小。

  3、蛋糕都是圓柱形的。

  2、教師:同學們觀察的很仔細,那你能根據剛學過的知識說一說爺爺蛋糕較大意味著什么嗎?

  學生:蛋糕大,意味著圓柱的體積大。

  3、教師:那你還知道什么是圓柱的體積嗎?

  學生:圓柱的體積就是圓柱體占空間的大小。

  4、教師:兩個蛋糕的體積相差較多,我們容易比較出那個體積大,如果體積相差較小我們怎么比較呢?

  學生:拿出準備的圓柱體進行比較,討論,各小組分別說明比較的方法并展示。

  教師:板書:圓柱的體積

  二、課上探究

  1、教師:同學們回憶一下我們還學過那些立體圖形?

  學生:還學過正方體和長方體。

  教師:它們的體積怎樣計算?(多媒體課件出示長方體)有什么共同點?

  學生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點都是底面積乘高。

  2、猜測圓柱的體積與什么有關

  師:拿出圓柱體,讓學生猜想圓柱體積與什么有關。

  生1、圓柱的體積與圓柱的高有關。

  生2、圓柱的體積與圓柱的底面積有關。

  生3、圓柱的`體積與圓柱的底面周長有關。

  生4、圓柱的體積與圓柱的底面半徑有關。

  3、推導圓柱體積公式

  ①師:同學們觀察圓柱的底面是一個圓,學習圓面積時,我們是把圓轉化成哪種圖形來求面積的?

  生:把圓轉化成近似長方形來求面積的。

  ②師:我們一起來回憶把圓轉化成近似長方形的過程,(課件)

  師:你發現了什么?

  生:我發現把圓平均分成的份數越多,拼成的圖形越接近長方形。

  ③師:圓柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉化成我們以前學過的哪種立體圖形呢?

  生:把圓柱轉化成近似的長方體。

  ④師用圓柱體演示轉換過程,讓學生說怎樣轉換的。

  生:把圓柱平均分成16份拼成一個近似的長方體。

  ⑤師:為了讓大家看的更清楚,我們再演示一下這個轉化過程。

  課件再次演示把圓柱等分16等份,拼成近似的長方體。

  再出示32等份的圓柱體拼成的近似的長方體,讓學生觀察,發現了什么?

  生:分成的份數越多,拼成的圖形越接近長方體。

  ⑥師:課件出示圓柱體和拼成的長方體,讓學生觀察,拼好的長方體與原來的圓柱比較,發現了什么?

  學生分組討論,匯報:

  生:長方體的高和圓柱的高相等。

  生:長方體的底面積和圓柱的底面積相等。

  ⑦師:你是怎么想的?

  生:剛才我們復習了把圓轉化成長方形,所以圓柱的底面積和長方體的底面積相等。

  ⑧師:再次用圓柱拼成近似長方體的過程,讓學生仔細觀察圓轉化成長方形后,面積相等。

  生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑

  師:課件演示長方體的體積=底面積×高

  ⑨師:那么圓柱的體積等于什么呢?

  生:圓柱的體積=底面積×高

  ⑩下面我們再一起回憶一下轉化的過程,(課件)

  讓學生獨立填答案,匯報:

  三、我們知道了圓柱的體積公式,下面我們就來解決一些實際問題。

  四、學生談收獲:

  希望上述資料能對你有所幫助,優秀的說課稿有助于教師表述具體課題的教學設想及其理論依據。

北師大版小學六年級下冊數學《圓柱的體積》教案 篇13

  教學目標:

  1、使學生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數學思想和方法,解決實際問題。

  3、滲透轉化思想,培養學生的自主探索意識。

  教學重點:掌握圓柱體積的計算公式。

  教學難點:靈活應用圓柱的體積公式解決實際問題。

  教學過程:

  一、自學反饋

  一根圓柱形木料,底面半徑是6分米,長12分米。它的體積是多少?    

  1、學生獨立解答,教師巡視指導。

  2、匯報交流:3.146212=1356.48(立方分米)

  3、你是怎樣算圓柱的體積的?

  圓柱的體積=底面積高,即v=sh。

  二、關鍵點撥  

  1、要求圓柱的體積必須知道什么條件?

  (1)底面積和高;

  (2)底面半徑和高;

  (3)底面直徑和高;

  (4)底面周長和高。

  2、如果知道底面半徑和高,怎樣求圓柱的體積?

  v柱=圓周率半徑的平方高。

  3、如果知道底面直徑和高,怎樣求圓柱的體積?

  v柱=圓周率(直徑÷2)的平方高。

  4、如果知道圓柱的底面周長和高,怎樣求體積?

  v柱=圓周率(周長÷圓周率÷2)的平方高。

  5、如果知道圓柱的體積和底面積,怎樣求高?     

  圓柱的高=圓柱的體積÷底面積

  三、解決實際問題

  1、一個圓柱形水桶,底面直徑是4分米,高80厘米,桶中水面高60厘米。桶中裝了多少升水?

  (1)學生獨立解答并反饋交流。

  (2)追問:如果往桶中放入一塊小石頭,水面上升到70厘米。則石頭的體積是多少立方厘米?

  2、練習三第5題。

  (1)指導學生變換公式:因為v=sh,所以h=v÷s。也可以列方程解答。

  (2)學生選擇喜愛的方法解答這道題目。

  3、練習三第7題。

  (1)學生思考:要求糧囤所能裝的玉米的重量,需先知道什么?

  (2)然后獨立完成。

  4、練習三第8題。

  (1)學生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

  (2)在充分理解題意后學生獨立完成,集體訂正。

  5、練習三第9、10題

  (1)學生獨立審題,完成9、10兩題。

  (2)第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式v=sh)

  (3)指名說說解答第10題的思路:根據兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  6、學生嘗試完成練習三第11題:求空心圓柱鋼材的體積。 外圓直徑10厘米,內圓直徑8厘米,長80厘米。     

  四、總結

  這節課,你有什么收獲

北師大版小學六年級下冊數學《圓柱的體積》教案(精選13篇) 相關內容:
主站蜘蛛池模板: 中文一区一区三区免费 | 蜜芽国产成人精品区 | 中国性感美女一级黄色影片 | 水野优香在线一区二区88 | 成人看片人aa | 国产精品久久久久影院嫩草 | 欧美成一区 | 顶级少妇A级毛片 | 我的初次内射欧美成人影视 | 开心五月丁香花综合网 | 18禁超污无遮挡无码免费动态图 | 午夜免费观看 | 国产欧美另类久久久精品图片 | 国产日韩欧美东南在线 | 蜜桃视频在线观看免费视频 | 国产一级毛片高清 | 精品国产三级a在线观看 | 亚洲日本国产综合 | 久久99精品久久久久久国产越南 | 一区一区三区四区产品动漫 | 九九热最新 | 人妻无码专区一区二区三区 | 亚洲精品午夜国产va久久成人 | 青青国产在线视频 | 成人免费网站入口www | 疯狂做受XXXX高潮欧美日本 | 国产一级义婬片AAA毛片久久 | 青青青国产在线视频 | av亚洲产国偷v产偷v自拍 | 亚洲一卡二卡三卡四卡无卡姐弟 | 91在线视频免费观看 | 四虎中文 | 国产成人久久精品麻豆二区照片 | 亚洲免费黄色片 | 日本中文在线视频 | 蜜桃成人免费视频在线播放 | 四虎影视在线观看视频 | 新版天堂8中文在线最新版官网 | 91在线看片无码永久免费 | 日本视频免费高清一本18 | a片久久久久久久久久久久 免费观看日韩精品 |