22.2.5 因式分解法
例2.已知9a2-4b2=0,求代數式 的值.分析:要求 的值,首先要對它進行化簡,然后從已知條件入手,求出a與b的關系后代入,但也可以直接代入,因計算量比較大,比較容易發生錯誤.
解:原式=
∵9a2-4b2=0
∴(3a+2b)(3a-2b)=0
3a+2b=0或3a-2b=0,
a=- b或a= b
當a=- b時,原式=- =3
當a= b時,原式=-3. 三、應用拓展 例3.我們知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可轉化為(x-a)(x-b)=0,請你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三項式x2-(a+b)x+ab的最大特點是x2項是由x·x而成,常數項ab是由-a·(-b)而成的,而一次項是由-a·x+(-b·x)交*相乘而成的.根據上面的分析,我們可以對上面的三題分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1 (2)∵x2-7x+6=(x-6)(x-1)
∴(x-6)(x-1)=0
∴x-6=0或x-1=0
∴x1=6,x2=1 (3)∵x2+4x-5=(x+5)(x-1)
∴(x+5)(x-1)=0
∴x+5=0或x-1=0
∴x1=-5,x2=1
上面這種方法,我們把它稱為十字相乘法. 四、歸納小結
本節課要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.
(2)三種方法(配方法、公式法、因式分解法)的聯系與區別:
聯系①降次,即它的解題的基本思想是:將二次方程化為一次方程,即降次.
②公式法是由配方法推導而得到.
③配方法、公式法適用于所有一元二次方程,因式分解法適用于某些一元二次方程.
區別:①配方法要先配方,再開方求根. ②公式法直接利用公式求根. ③因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0. 五、作業 一、選擇題
1.下面一元二次方程解法中,正確的是( ).