《直線與圓的位置關系》
教材:華東師大版實驗教材九年級上冊
一、教材分析:
1、 教材的地位和作用
圓的有關性質,被廣泛地應用于工農業生產、交通運輸等方面,所涉及的數學知識較為廣泛;學好本章內容,能提高解題的綜合能力。而本節的內容緊接點與圓的位置關系,它體現了運動的觀點,是研究有關性質的基礎,也為后面學習圓與圓的位置關系及高中繼續學習幾何知識作鋪墊。
2、 教學目標
知識目標:使學生從具體的事例中認知和理解直線與圓的三種位置關系并能概括其定義,會用定義來判斷直線與圓的位置關系,通過類比點與圓的位置關系及觀察、實驗等活動探究直線與圓的位置關系的數量關系及其運用。
過程與方法:通過觀察、實驗、討論、合作研究等數學活動使學生了解探索問題的一般方法;由觀察得到“圓心與直線的距離和圓半徑大小的數量關系對應等價于直線和圓的位置關系”從而實現位置關系與數量關系的轉化,滲透運動與轉化的數學思想。
情感態度與價值觀:創設問題情景,激發學生好奇心;體驗數學活動中的探索與創造,感受數學的嚴謹性和數學結論的正確性,在學習活動中獲得成功的體驗;通過“轉化”數學思想的運用,讓學生認識到事物之間是普遍聯系、相互轉化的辨證唯物主義思想。
3、 教學重、難點
重點:理解直線與圓的相交、相離、相切三種位置關系;
難點:學生能根據圓心到直線的距離d與圓的半徑r之間的數量關系,揭示直線與圓的位置關系;直線與圓的三種位置關系判定方法的運用。
二、教法與學法分析
教無定法,教學有法,貴在得法。數學是一門培養人的思維、發展人的思維的基礎學科。在教學過程中,不僅要對學生傳授數學知識,更重要的應該是對他們傳授數學思想、數學方法。初三學生雖然有一定的理解力,但在某種程度上特別是平面幾何問題上,學生還是依靠事物的具體直觀形象,所以我以參與式探究教學法為主,整堂課緊緊圍繞“情景問題——學生體驗——合作交流”的模式,并發揮微機的直觀、形象功能輔助演示直線與圓的位置關系,激勵學生積極參與、觀察、發現其知識的內在聯系,使每個學生都能積極思維。這樣,一方面可激發學生學習的興趣,提高學生的學習效率,另一方面拓展學生的思維空間,培養學生用創造性思維去學會學習。
三、教學過程:
我的教學流程設計是:
1、 創設情景、孕育新知;2、啟發誘導、探索新知;3、講練結合、鞏固新知;
4、知識拓展、深化提高 5、小結新知,畫龍點睛 6、布置作業,復習鞏固
教學環節
教學過程
教師活動
學生活動
設計意圖
(一)
創設情景,孕育新知,引入新課
1、微機演示唐朝詩人王維《使至塞上》:
單車欲問邊,屬國過居延。
征蓬出漢塞,歸雁入胡天。
大漠孤煙直,長河落日圓。
蕭關逢候騎,都護在燕然。
第三句以出色的描寫,道出了邊塞之景的奇特壯麗和作者的孤寂之感!盎氖徣藷煹母瓯跒┥现挥蟹榛鹋_的濃煙直沖天空”,如果我們從數學的角度看到的將是這樣一幅幾何圖形:一條直線垂直于一個平面。那么“圓圓的落日慢慢地沉入黃河之中”又是怎樣的幾何圖形呢?請同學們猜想并動手畫一畫。
2、 借助微機展示“圓圓的落日慢慢地沉入黃河之中”的動畫圖片從而展現直線與圓的三種位置關系。