圓周角
第一課時 (一)
教學目標:
(1)理解的概念,掌握的兩個特征、定理的內容及簡單應用;
(2)繼續培養學生觀察、分析、想象、歸納和邏輯推理的能力;
(3)滲透由“特殊到一般”,由“一般到特殊”的數學思想方法.
教學重點:的概念和定理
教學難點:定理的證明中由“一般到特殊”的數學思想方法和完全歸納法的數學思想.
教學活動設計:(在教師指導下完成)
(一)的概念
1、復習提問:
(1)什么是圓心角?
答:頂點在圓心的角叫圓心角.
(2)圓心角的度數定理是什么?
答:圓心角的度數等于它所對弧的度數.(如右圖)
2、引題:
如果頂點不在圓心而在圓上,則得到如左圖的新的角∠ACB,它就是.(如右圖)(演示圖形,提出的定義)
定義:頂點在圓周上,并且兩邊都和圓相交的角叫做
3、概念辨析:
教材P93中1題:判斷下列各圖形中的是不是,并說明理由.
學生歸納:一個角是的條件:①頂點在圓上;②兩邊都和圓相交.
(二)的定理
1、提出的度數問題
問題:的度數與什么有關系?
經過電腦演示圖形,讓學生觀察圖形、分析與圓心角,猜想它們有無關系.引導學生在建立關系時注意弧所對的的三種情況:圓心在的一邊上、圓心在內部、圓心在外部.
(在教師引導下完成)
(1)當圓心在的一邊上時,與相應的圓心角的關系:(演示圖形)觀察得知圓心在上時,是圓心角的一半.
提出必須用嚴格的數學方法去證明.
證明:(圓心在上)
(2)其它情況,與相應圓心角的關系:
當圓心在外部時(或在內部時)引導學生作輔助線將問題轉化成圓心在一邊上的情況,從而運用前面的結論,得出這時仍然等于相應的圓心角的結論.
證明:作出過C的直徑(略)
定理: 一條弧所對的
周角等于它所對圓心角的一半.
說明:這個定理的證明我們分成三種情況.這體現了數學中的分類方法;在證明中,后兩種都化成了第一種情況,這體現數學中的化歸思想.(對A層學生滲透完全歸納法)
(三)定理的應用
1、例題: 如圖 OA、OB、OC都是圓O的半徑, ∠AOB=2∠BOC.
求證:∠ACB=2∠BAC
讓學生自主分析、解得,教師規范推理過程.
說明:①推理要嚴密;②符號應用要嚴格,教師要講清.
2、鞏固練習:
(1)如圖,已知圓心角∠AOB=100°,求∠ACB、∠ADB的度數?
(2)一條弦分圓為1:4兩部分,求這弦所對的的度數?
說明:一條弧所對的有無數多個,卻這條弧所對的的度數只有一個,但一條弦所對的的度數只有兩個.
(四)總結
知識:(1)定義及其兩個特征;(2)定理的內容.
思想方法:一種方法和一種思想:
在證明中,運用了數學中的分類方法和“化歸”思想.分類時應作到不重不漏;化歸思想是將復雜的問題轉化成一系列的簡單問題或已證問題.
(五)作業 教材P100中 習題A組6,7,8
第 1 2 頁