組合
對于每一道題目,教師必須先讓學生獨立思考,在進行全班討論,對于學生的每一種解法,教師要先讓學生判定正誤,在給予點播.對于排列、組合應用問題的解決我們提倡一題多解,這樣有利于培養學生的分析問題解決問題的能力,在學生的多種解法基礎上教師要引導學生選擇最佳方案,總結解題規律.對于學生解題中的常見錯誤,教師一定要講明道理,認真分析錯誤原因,使學生在是非的判定得以提高.
4.兩個性質定理教學時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是
這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應的.
對定理2,可啟發學生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的;(3)在這些組合里,有多少個是含有 的;(4)從上面的結果,可以得出一個怎樣的公式.在此基礎上引出定理2.
對于 ,和 一樣,是一種規定.而學生經常誤以為是推算出來的,因此,教學時要講清楚.
教學設計示例
教學目標
(1)使學生正確理解組合的意義,正確區分排列、組合問題;
(2)使學生把握組合數的計算公式;
(3)通過學習組合知識,讓學生把握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數及組合數的公式;
難點是解組合的應用題.
教學過程設計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需預備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.
設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.
(二)新課講授
[提出問題 創設情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.