理論依據(jù)或意圖
(2)要找出隨機(jī)事件a包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。
除了畫樹狀圖,還有什么方法求基本事件的個(gè)數(shù)呢? 教師提問,學(xué)生回答,加深對(duì)古典概型的概率計(jì)算公式的理解。 深化對(duì)古典概型的概率計(jì)算公式的理解,也抓住了解決古典概型的概率計(jì)算的關(guān)鍵。
四例題分析推廣應(yīng)用
例2 單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從a,b,c,d四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會(huì)做,他隨機(jī)的選擇一個(gè)答案,問他答對(duì)的概率是多少?
分析:
解決這個(gè)問題的關(guān)鍵,即討論這個(gè)問題什么情況下可以看成古典概型。如果考生掌握或者掌握了部分考察內(nèi)容,這都不滿足古典概型的第2個(gè)條件——等可能性,因此,只有在假定考生不會(huì)做,隨機(jī)地選擇了一個(gè)答案的情況下,才可以化為古典概型。
解:
這是一個(gè)古典概型,因?yàn)樵囼?yàn)的可能結(jié)果只有4個(gè):選擇a、選擇b、選擇c、選擇d,即基本事件共有4個(gè),考生隨機(jī)地選擇一個(gè)答案是選擇a,b,c,d的可能性是相等的。從而由古典概型的概率計(jì)算公式得:
課后思考:
(1)在標(biāo)準(zhǔn)化考試中既有單選題又有多選題,多選題是從a,b,c,d四個(gè)選項(xiàng)中選出所有正確的答案,同學(xué)們可能有一種感覺,如果不知道正確答案,多選題更難猜對(duì),這是為什么?
(2)假設(shè)有20道單選題,如果有一個(gè)考生答對(duì)了17道題,他是隨機(jī)選擇的可能性大,還是他掌握了一定知識(shí)的可能性大? 學(xué)生先思考再回答,教師對(duì)學(xué)生沒有注意到的關(guān)鍵點(diǎn)加以說明。 讓學(xué)生明確決概率的計(jì)算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件a包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。
鞏固學(xué)生對(duì)已學(xué)知識(shí)的掌握。
項(xiàng) 目 內(nèi) 容 師生活動(dòng) 理論依據(jù)或意圖
教學(xué)過程分析
四例題分析推廣應(yīng)用
例3 同時(shí)擲兩個(gè)骰子,計(jì)算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是5的概率是多少?
解:(1)擲一個(gè)骰子的結(jié)果有6種,我們把兩個(gè)骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的結(jié)果都可以與2號(hào)骰子的任意一個(gè)結(jié)果配對(duì),我們用一個(gè)“有序?qū)崝?shù)對(duì)”來表示組成同時(shí)擲兩個(gè)骰子的一個(gè)結(jié)果(如表),其中第一個(gè)數(shù)表示1號(hào)骰子的結(jié)果,第二個(gè)數(shù)表示2號(hào)骰子的結(jié)果。(可由列表法得到)
2號(hào)
1號(hào) 1 2 3 4 5 6
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
由表中可知同時(shí)擲兩個(gè)骰子的結(jié)果共有36種。
(2)在上面的結(jié)果中,向上的點(diǎn)數(shù)之和為5的結(jié)果有4種,分別為:
(1,4),(2,3),(3,2),(4,1)