中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 高中數學教案 > 高二數學教案 > 圓的方程(通用9篇)

圓的方程

發布時間:2022-11-07

圓的方程(通用9篇)

圓的方程 篇1

  教學目標 

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求,用解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標 

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求.

  教學難點 :圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程 

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵ 

  ∴ 

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的.

  分析:用圓的一般方程,代入點的坐標,解方程組得為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求.

  【作業 】課本第82頁5,6,7,8.

  【板書設計 

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業 :

圓的方程 篇2

  教學目標

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求,用解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標:

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求.

  教學難點:圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程:

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵ 

  ∴ 

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的.

  分析:用圓的一般方程,代入點的坐標,解方程組得為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求.

  【作業 】課本第82頁5,6,7,8.

  【板書設計】

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業 :

圓的方程 篇3

  教學目標

  (1)把握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  教學建議

  教材分析

  (2)重點、難點分析

  教學設計示例

  圓的一般方程

  教學目標:

  (1)把握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步把握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求圓的方程.

  教學難點:圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程:

  引入

  前邊已經學過了圓的標準方程

  把它展開得

  任何圓的方程都可以通過展開化成形如

  ①

  的方程

  問題1

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  假如①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  問題2圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  實例分析

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設圓的方程為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求圓的方程為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  概括總結通過學生討論,師生共同總結:

  (1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;假如給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵

  ∴

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  練習鞏固

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的圓的方程.

  分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .

  (3)課本第79頁練習1,2.

  小結師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求圓的方程.

  作業課本第82頁5,6,7,8.

  板書設計

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業:

圓的方程 篇4

  教學目標

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求,用解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標:

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求.

  教學難點:圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程:

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵ 

  ∴ 

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的.

  分析:用圓的一般方程,代入點的坐標,解方程組得為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求.

  【作業 】課本第82頁5,6,7,8.

  【板書設計】

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業 :

圓的方程 篇5

  教學目標 

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求,用解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標 

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求.

  教學難點 :圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程 

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵ 

  ∴ 

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的.

  分析:用圓的一般方程,代入點的坐標,解方程組得為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求.

  【作業 】課本第82頁5,6,7,8.

  【板書設計 

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業 :

圓的方程 篇6

  教學目標 

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求,用解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標 

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求.

  教學難點 :圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程 

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵ 

  ∴ 

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的.

  分析:用圓的一般方程,代入點的坐標,解方程組得為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求.

  【作業 】課本第82頁5,6,7,8.

  【板書設計 

  圓的一般方程

  圓的一般方程

  例1:

  例2:

  例3:

  練習:

  小結:

  作業 :

圓的方程 篇7

  教學目的:掌握圓的標準方程,并能解決與之有關的問題 

  教學重點:圓的標準方程及有關運用 

  教學難點 :標準方程的靈活運用 

  教學過程 : 

  一、導入  新課,探究標準方程 

  二、掌握知識,鞏固練習 

  練習:⒈說出下列圓的方程 

  ⑴圓心(3,-2)半徑為5 ⑵圓心(0,3)半徑為3 

  ⒉指出下列圓的圓心和半徑 

  ⑴(x-2)2+(y+3)2=3 

  ⑵x2+y2=2 

  ⑶x2+y2-6x+4y+12=0 

  ⒊判斷3x-4y-10=0和x2+y2=4的位置關系 

  ⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程 

  三、引伸提高,講解例題 

  例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法) 

  練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。 

  2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。 

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。 

  例3、點M(x0,y0)在 x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維) 

  四、小結練習 P77  1,2,3,4 

  五、作業      P81  1,2,3,4 

圓的方程 篇8

  §7.6  圓的方程(第二課時)

  ㈠課時目標 

  1. 掌握圓的一般式方程及其各系數的幾何特征。

  2. 待定系數法之應用。

  ㈡問題導學

  問題1:寫出圓心為(a,b),半徑為r的圓的方程,并把圓方程改寫成二元二次方程的形式。 -2ax-2by+ =0

  問題2:下列方程是否表示圓的方程,判斷一個方程是否為圓的方程的標準是什么?

  ① ;            ② 1                     

  ③ 0;            ④ -2x+4y+4=0

  ⑤ -2x+4y+5=0;             ⑥ -2x+4y+6=0

  ㈢教學過程 

  [情景設置] 

  把圓的標準方程 展開得 -2ax-2by+  =0

  可見,任何一個圓的方程都可以寫成下面的形式:

  +Dx+Ey+F=0                                        ①

  提問:方程表示的曲線是不是圓?一個方程表示的曲線是否為圓有標準嗎?

  [探索研究]

  將①配方得 :    ( )  ② 

  將方程 ②與圓的標準方程對照.

  ⑴當 >0時, 方程 ②表示圓心在 (- ),半徑為 的圓.

  ⑵當 =0時,方程①只表示一個點(- ).

  ⑶當 <0時, 方程①無實數解,因此它不表示任何圖形.

  結論: 當 >0時, 方程 ①表示一個圓, 方程 ①叫做圓的一般方程.

  圓的標準方程的優點在于明確地指出了圓心和半徑,而一般方程突出了形式上的特點:

  ⑴ 和 的系數相同,不等于0;

  ⑵沒有xy這樣的二次項.

  以上兩點是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圓的必要條件,但不是充分條件

  [知識應用與解題研究]

  [例1]  求下列各圓的半徑和圓心坐標.

  ⑴ -6x=0;     ⑵ +2by=0(b≠0)

  [例2]求經過O(0,0),A(1,1),B(2,4)三點的圓的方程,并指出圓心和半徑。

  分析:用待定系數法設方程為   +Dx+Ey+F=0 ,求出D,E,F即可。

  [例3]已知一曲線是與兩個定點O(0,0)、A(3,0)距離的比為 的點的軌跡,求此曲線的方程,并畫出曲線。

  分析:本題直接給出點,滿足條件,可直接用坐標表示動點滿足的條件得出方程。

  反思研究:到O(0,0),A(1,1)的距離之比為定植k(k>0)的點的軌跡又如何?當k=1時為直線,k>0時且k≠1時為圓。

  ㈣提煉總結

  1. 圓的一般方程: +Dx+Ey+F=0 ( >0)。

  2. 二元二次方程A +Bxy+C +Dx+Ey+F=0表示圓的必要條件是:A=C≠0且B=0。

  3. 圓的方程兩種形式的選擇:與圓心半徑有直接關系時用標準式,無直接關系選一般式。

  4. 兩圓的位置關系(相交、相離、相切、內含)。

  ㈤布置作業 

  1. 直線l過點P(3,0)且與圓 -8x-2y+12=0截得的弦最短,則直線l的方程為:

  2. 求下列各圓的圓心、半徑并畫出它們的圖形。

  ⑴    -2x-5=0;  ⑵ +2x-4y-4=0

  3.經過兩圓 +6x-4=0和 +6y-28=0的交點,并且圓心在直線x-y-4=0上的圓的方程。

圓的方程 篇9

  圓的方程

  教學目標

  (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

  (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

  (3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

  (4)掌握直線和圓的位置關系,會求圓的切線.

  (5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

  教學建議

  教材分析

  (1)知識結構

  (2)重點、難點分析

  ①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.

  ②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

  教法建議

  (1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

  (2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

  (3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

  (4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

  教學設計示例

  圓的一般方程

  教學目標:

  (1)掌握圓的一般方程及其特點.

  (2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

  (3)能用待定系數法,由已知條件求出圓的一般方程.

  (4)通過本節課學習,進一步掌握配方法和待定系數法.

  教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

  (2)用待定系數法求圓的方程.

  教學難點:圓的一般方程特點的研究.

  教學用具:計算機.

  教學方法:啟發引導法,討論法.

  教學過程:

  【引入】

  前邊已經學過了圓的標準方程

  把它展開得

  任何圓的方程都可以通過展開化成形如

  ①

  的方程

  【問題1】

  形如①的方程的曲線是否都是圓?

  師生共同討論分析:

  如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

  ②

  顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

  (1)當 時,②表示以 為圓心、以 為半徑的圓;

  (2)當 時,②表示一個點 ;

  (3)當 時,②不表示任何曲線.

  總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

  圓的一般方程的定義:

  當 時,①表示以 為圓心、以 為半徑的圓,

  此時①稱作圓的一般方程.

  即稱形如 的方程為圓的一般方程.

  【問題2】圓的一般方程的特點,與圓的標準方程的異同.

  (1) 和 的系數相同,都不為0.

  (2)沒有形如 的二次項.

  圓的一般方程與一般的二元二次方程

  ③

  相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

  圓的一般方程與圓的標準方程各有千秋:

  (1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

  (2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

  【實例分析】

  例1:下列方程各表示什么圖形.

  (1) ;

  (2) ;

  (3) .

  學生演算并回答

  (1)表示點(0,0);

  (2)配方得 ,表示以 為圓心,3為半徑的圓;

  (3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

  例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.

  分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

  解:設圓的方程為

  因為 、 、 三點在圓上,則有

  解得: , ,

  所求圓的方程為

  可化為

  圓心為 ,半徑為5.

  請同學們再用標準方程求解,比較兩種解法的區別.

  【概括總結】通過學生討論,師生共同總結:

  (1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

  (2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

  下面再看一個問題:

  例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

  解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

  ∵

  ∴

  即

  化簡得

  點 在曲線上,并且曲線為圓 內部的一段圓弧.

  【練習鞏固】

  (1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

  (2)求經過三點 、 、 的圓的方程.

  分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .

  (3)課本第79頁練習1,2.

  【小結】師生共同總結:

  (1)圓的一般方程及其特點.

  (2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

  (3)用待定系數法求圓的方程.

  【作業】課本第82頁5,6,7,8.

圓的方程(通用9篇) 相關內容:
  • 圓的方程

    教學目標 (1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑. (2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化. (...

  • 《圓的方程》的課堂教案設計(精選7篇)

    單元目標:1、使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握圓周率的近似值。2、使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。...

  • 數學教案-圓的方程

    7.6 圓的方程(第二課時)㈠課時目標1.掌握圓的一般式方程及其各系數的幾何特征。2.待定系數法之應用。㈡問題導學問題1:寫出圓心為(a,b),半徑為r的圓的方程,并把圓方程改寫成二元二次方程的形式。...

  • 圓的方程教案

    教學目的:掌握圓的標準方程,并能解決與之有關的問題教學重點:圓的標準方程及有關運用教學難點:標準方程的靈活運用教學過程:一、導入新課,探究標準方程二、掌握知識,鞏固練習練習:⒈說出下列圓的方程⑴圓心(3,-2)半徑為5⑵圓心...

  • 《方程》教案(精選17篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據直觀情境里的等量關系列方程。...

  • 第一單元 方程 教案(通用2篇)

    第一課時 方程的意義教學內容:教科書第1~2頁的內容及練習一的1~3題。教學目標:1、通過學習,使學生理解方程的含義,知道像x+50=150、2x=200這樣含有未知數的等式是方程。2、培養學生概括、歸納的能力。...

  • 第一單元《方程》第三課時(精選17篇)

    教學內容:教科書第6頁練習一的第7~12題。 教學目標: 1、通過練習,使學生進一步體會方程的意義及等式的性質。 2、通過練習,使學生能根據等式的性質,正確地解方程及檢驗。...

  • 《方程》教案范文合集(精選13篇)

    本單元教學方程的知識,是在四年級(下冊)“用字母表示數”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內容分成三局部編排。第1~2頁教學等式的含義與方程的意義,根據直觀情境里的等量關系列方程。...

  • 第一單元《方程》第一課時(精選12篇)

    第一課時 教學內容:教科書第1~2頁,例1、例2、試一試、練一練,練習一第1~3題。 教學目標: 1、認識等式,以具體的實例引導學生通過自主的探索活動,初步理解等式的特征。...

  • 第一單元 方程 5、整理與練習(精選3篇)

    第一單元 方程7、整理與練習(3)主備人:孫麗萍教學內容:教科書第9頁第11-14題。教學目標:1、在實踐活動中進一步體會列方程解決問題的靈活性及其獨特價值,提高分析問題和解決問題的能力。...

  • 式與方程教學設計(精選7篇)

    教學目標:1、使學生進一步體會方程的意義和思想,會用等式的性質解一些簡單的方程。2、使學生進一步認識用字母表示數及其作用,能正確地用含有字母的式子表示數量及數量關系、計算公式,3、培養學生抽象,概括的能力。...

  • 《方程》教案范文錦集(精選13篇)

    教學內容:教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。教學目標:1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。...

  • 理想氣體的狀態方程(通用2篇)

    教學目標 知識目標1、知道摩爾氣體常量.了解克拉珀龍方程的推導過程.2、在理解克拉珀龍方程內容的基礎上學會方程的應用.3、進一步強化對氣體狀態方程的應用.能力目標通過克拉珀龍方程的推導,培養學生對問題的分析、推理、綜合能力.情感目...

  • 稍復雜的方程(精選12篇)

    教學內容: 列方程解含有兩個未知數的應用題(例3,練習十三的第4、5、6、7題。)教學目標:1.初步學會分析“已知有兩個數的和或差,和兩個數的倍數關系,求兩數各是多少”的應用題,正確地列出方程解答。...

  • 第一單元《方程》第二課時(精選13篇)

    第二課時 教學內容:教科書第3~4頁,例3、例4、試一試、練一練,練習一第4~6題。 教學目標: 1、使學生在具體的情景中的初步理解“等式的兩邊同時加上或減去同一個數,所得的結果仍然是等式”,會用等式的性質解簡單的方程。...

  • 高二數學教案
主站蜘蛛池模板: 天天草天天操 | 国产精品一区二区2 | 永久免费的啪啪免费网址 | 人人爽亚洲AV人人爽AV人人片 | 欧美日韩亚洲中文字幕二区 | 玖草视频| 国产成人久久综合一区 | 国产免费看片 | 国产精品久久久久av免费 | 亚洲动漫精品无码AV天堂 | 亚洲CHINESE猛男自慰GAY | 亚洲素人一区二区 | 大陆av在线 | 少妇对白露脸打电话系列 | 92国产精品午夜福利免费 | 麻豆精品国产91久久久久久 | 青青久久久久 | 国产乱叫456在线 | 波多野a中文字幕 | 人妻无码久久精品人妻 | 1区2区3区4区产品乱码入口 | 成人妇女免费播放久久久 | 产后漂亮奶水人妻无码 | 免费无遮挡男女视频 | 91国偷自产一区二区三区老熟女 | 波多野结AV衣东京热无码专区 | 久艹在线免费观看 | 99精品在线免费视频 | 日韩激情一区二区 | 好姑娘5剧情在线观看免费 v888aⅴ视频在线播放 | 欧美日韩视频在线播放 | 请别相信她免费观看高清章若楠 | 精品黑人一区二区三区 | 亚洲熟妇无码AV不卡在线 | 午夜一区二区视频 | 日本乱码一区二区 | 国产亚洲综合久久系列 | 九七人人爽 | 国产午精品午夜福利757视频播放 | 91高清免费看 | 在线岛国片免费无码AV |