圓的方程
教學(xué)目標(biāo)(1)把握圓的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫出圓的圓心坐標(biāo)和半徑.
教學(xué)建議
教材分析
(2)重點、難點分析
教學(xué)設(shè)計示例
圓的一般方程
教學(xué)目標(biāo):
(1)把握圓的一般方程及其特點.
(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.
(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.
(4)通過本節(jié)課學(xué)習(xí),進一步把握配方法和待定系數(shù)法.
教學(xué)重點:(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.
(2)用待定系數(shù)法求圓的方程.
教學(xué)難點:圓的一般方程特點的研究.
教學(xué)用具:計算機.
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
引入
前邊已經(jīng)學(xué)過了圓的標(biāo)準(zhǔn)方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
問題1
形如①的方程的曲線是否都是圓?
師生共同討論分析:
假如①表示圓,那么它一定是某個圓的標(biāo)準(zhǔn)方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數(shù)密切相關(guān),具體如下:
(1)當(dāng) 時,②表示以 為圓心、以 為半徑的圓;
(2)當(dāng) 時,②表示一個點 ;
(3)當(dāng) 時,②不表示任何曲線.
總結(jié):任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當(dāng) 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
問題2圓的一般方程的特點,與圓的標(biāo)準(zhǔn)方程的異同.
(1) 和 的系數(shù)相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:
(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運用.
實例分析
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學(xué)生演算并回答