過三點的圓
1、教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
重點:①確定圓的定理.它是圓中的基礎(chǔ)知識,是確定圓的理論依據(jù);②不在同一直線上的三點作圓.“作圓”不僅體現(xiàn)在證明“確定圓的定理”的重要作用,也是解決實際問題中常用的方法;③反證法證明命題的一般步驟.反證法雖是選學(xué)內(nèi)容,但它是證明數(shù)學(xué)命題的重要的基本方法之一.
難點:反證法不是直接以題設(shè)推出結(jié)論,而是從命題結(jié)論的反面出發(fā),引出矛盾,從而證明原命題正確,又因為矛盾的多樣化,學(xué)生剛剛接觸,所以反證法不僅是本節(jié)的難點,也是本章的難點.
2、教學(xué)建議
本節(jié)內(nèi)容需要兩個課時.在第一課時的教學(xué)中:
(1)把課堂活動設(shè)計的重點放在如何調(diào)動學(xué)生的主體和發(fā)現(xiàn)問題、解決問題的能力上.讓學(xué)生作圖、觀察、分析、概括出定理.
(2)組織學(xué)生開展“找直角、銳角和鈍角三角形的外心”的位置活動,在激發(fā)學(xué)生的學(xué)習(xí)興趣中,提高作圖能力.
(3)在教學(xué)中,解決過已知點作圓的問題,應(yīng)緊緊抓住對圓心和半徑的探討,已知圓心和半徑就可以作一個圓,這是從圓的定義引出的基本思路,因此作圓的問題就是如何根據(jù)已知條件去找圓心和半徑的問題.由于作圓要經(jīng)過已知點,如果圓心的位置確定了,圓的半徑也就隨之確定,因此作圓的問題又變成了找圓心的問題,是否可以作圓以及能作多少個圓,都取決于能否確定圓心的位置和圓心的個數(shù).
在第二課時反證法的教學(xué)中:
(1)對于A層的學(xué)生盡量使學(xué)生理解并會簡單應(yīng)用,對B層的學(xué)生使學(xué)生了解即可.
(2)在教學(xué)中老師要精講:①為什么要用反證法;②反證法的基本步驟;③精講精練.
第 1 2 3 頁