1.6 整式的乘法(精選6篇)
1.6 整式的乘法 篇1
(2)
教學目標:
1.經歷探索整式的乘法運算法則的過程,會進行簡單的整式的乘法運算.
2.理解整式的乘法運算的算理,體會乘法分配律的作用和轉化思想,發展有條理的思考及語言表達能力.
教學重點:
整式的乘法運算.
教學難點:
推測整式乘法的運算法則.
教學過程:
一、探索練習: 展示圖畫,讓學生觀察圖畫用不同的形式表示圖畫的面積.并做比較. 由此得到單項式與多項式的乘法法則. 觀察式子左右兩邊的特點,找出單項式與多項式的乘法法則.
跟著用乘法分配律來驗證.
單項式與多項式相乘:就是根據分配律用單項式去乘多項式的每一項再把所得的積相加.
二、例題講解:
例2:計算 (1)2ab(5ab2+3a2b);
(2) 解略.
三、鞏固練習:
1.判斷題: (1)3a3·5a3=15a3 ( )
(2) ( )
(3) ( )
(4)-x2(2y2-xy)=-2xy2-x3y ( )
2.計算題:
(1) ; (2) ; (3) ; (4)-3x(-y-xyz); (5)3x2(-y-xy2+x2); (6)2ab(a2b- c); (7)(a+b2+c3)·(-2a); (8)[-(a2)3+(ab)2+3]·(ab3); (9) ; (10) ; (11)( .
四、應用題:
1.有一個長方形,它的長為3acm,寬為(7a+2b)cm,則它的面積為多少?
五、提高題:
1.計算: (1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2-3xn-1+1).
2.已知有理數a、b、c滿足|a―b―3|+(b+1)2+|c-1|=0,求(-3ab)·(a2c-6b2c)的值.
3.已知:2x·(xn+2)=2xn+1-4,求x的值.
4.若a3(3an-2am+4ak)=3a9-2a6+4a4,求-3k2(n3mk+2km2)的值.
小結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算. 作業:課本p11習題1.3 教學后記:
1.6 整式的乘法(3)——多項式乘以多項式
教學目標:
1.經歷探索多項式乘法的法則的過程,理解多項式乘法的法則,并會進行多項式乘法的運算.
2.進一步體會乘法分配律的作用和轉化的思想,發展有條理的思考和語言表達能力.
教學重點:
多項式乘法的運算.
教學難點:
探索多項式乘法的法則,注意多項式乘法的運算中“漏項”、“符號”的問題
教學過程:
一、探索練習: 如圖,計算此長方形的面積有幾種方法?如何計算?小組討論. 你從計算中發現了什么? 多項式與多項式相乘,_____________________________.
二、鞏固練習: 1.計算下列各題: (1) ;(2) ;(3) ; (4) ;(5) ;(6) ; (7) ;(8) ;(9) ; (10) ;(11) .
三、提高練習:
1.若 ;則m=_____,n=________ 2.若 ,則k的值為 ( ) (a)a+b (b)-a-b (c)a-b (d)b-a 3.已知 ,則a=______,b=______.
4.若 成立,則x為__________.
5.計算: +2 . 6.某零件如圖示,求圖中陰影部分的面積s.
7.在 與 的積中不含 與 項,求p、q的值.
一、 小結:
本節課學習了多項式乘法的運算,要特別注意多項式乘法的運算 中不要“漏項”、和“符號”的正確處理.
六、作業:第28頁習題 1、2
1.6 整式的乘法 篇2
整式的乘法是在學生學習了同底數冪的乘法、冪的乘方、積的乘方等知識之后安排的有關整式的運算學習。下面是由小編為大家帶來的關于整式的乘法教學反思,希望能夠幫到您!
整式的乘法教學反思一
這部分內容是在學習了有理數的四則混合運算、冪的運算性質、合并同類項、去括號、整式的加減等內容的基礎上進行的,它是前面知識的延伸.這一部分具有承前啟后的作用,啟后是它是學習整式的除法、分式的運算、函數、二次方程的解法學習的基礎。整式的乘法這一部分內容主要分成三部分內容。
第一部分是單項式乘單項式,這一部分內容主要是要注意運算的法則依據是乘法的交換律,分成三步計算:一是各個單項式的系數相乘,二是同底數冪相乘,三是單獨的字母照抄。這部分的計算中往往會混合了積的乘方,要注意運算的順序,積的乘方應注意復習鞏固。
第二部分是單項式乘多項式,這一部分內容的依據是乘法分配律,要注意有乘方運算時的運算順序以及符號的確定。
第三部分內容是多項式乘多項式,注意帶符號運算以及不要漏乘。在混合運算中注意括號運算,不要漏括號。
在整個這一部分的內容教學中,難點與易錯點主要是:
1、符號不能正確的判斷,其中主要是沒有注意帶符號運算或者沒有注意整體思想,漏掉括號或者去括號錯誤。
2、同時注意整體思想的滲透,作為整體的相反數的的變形,根據指數的奇偶性來判斷符號。
3、注意實際問題主要是圖形的面積問題的正確解決。
注重難點與學習方法。
1、關注對教學難點的教學。
新課程標準下,數學教育的根本任務是發展學生的思維,教材中的難點往往是數學思維迅速豐富、過程大步跳躍的地方,所以在本節課難點教學中既注意了化難為易的效果,又注意了化難為易的過程,在探究法則的過程中設置循序漸進的問題,不斷啟迪學生思考,發展學生的思維能力,在應用法則的過程中,又引導學生進行解題后的反思,這些將促使學生知識水平和能力水平同時提高。
2、關注對學生學習方法的指導。
建構主義學習理論認為,學生的學習是對知識主動建構的過程,同時學生要主動構建對外部信息的解釋交流,所以在教學中注重營造學生自主參與、師生互動合作、探究創新為主線的教學模式,從學生已有的知識結構入手,逐漸發現和提出新問題,在解決問題的過程中學會思考,在探究中掌握知識。
3、教育的根本目的在于促進每一個學生的發展,這也是數學教育的根本目的,因此教師在教學設計時,結合學生實際,有效整合教材,精選例習題,分層施教。本單元教學是以習題訓練為主的,教學時注意選擇了有層次的例題和練習,采用“兵教兵”的方法,組織學生開展合作學習。在探究問題的設計上也是由淺入深,目的就在于通過引導學生對問題的解決,能熟練掌握基礎知識,靈活運用基本方法,提高分析問題和解決問題的能力。
4、讓學生在“做”中學。
依據教學內容及教學要求,本節課通過拼圖游戲,讓學生動手操作,在活動中既復習了單項式與多項式相乘,又引出多項式相乘的運算。由于所拼圖形的面積會有不同的表示方式,通過對比這些表示方式可以使學生用幾何方法對多項式乘法法則有一個直觀認識,再由幾何解釋的基礎上從代數運算的角度將多項式與多項式相乘轉化為單項式與多項式相乘,整個過程中學生在教師指導下經歷操作、探究、解決問題的過程,引導學生在問題探究中不斷質疑和釋疑,體現了以探究為出發,以活動為中心,注重讓學生從做中學的教學思路。
5、加強反思,注重對學生數學思想方法的滲透。
美國認知心理學家加涅指出,學習者學會了如何學習、如何記憶、如何獲得更多的學習思維和分析思維,將會使它們變得越來越自主學習。所以,在教學中非常注重引導學生進行反思,在探究問題的過程中引導學生思考運用了哪些數學思想,例如本課中將多項式乘法轉化為單項式乘以多項式的“轉化”的思想,運用乘法分配律時的“整體”思想,拼圖列式中運用的“數形結合”思想等,可以幫助學生從本質上理解所學知識,并提高解決問題的能力,真正使教學過程起到“授之以漁”的作用。
整式的乘法教學反思二
本節是學習了同底數冪的乘法、冪的乘方、積的乘方后的綜合運用,是因式分解的逆運算,也是進行因式分解的基礎,其中,單項式乘以單項式是本節的重點,單項式乘以多項式中項的符號的確定是本節的難點,而單項式乘以多項式有轉化到單項式與單項式的相乘,因此,掌握好單項式乘以單項式是關鍵,本人從以下幾方面作反思:
(1)成功之處
也從課本開頭的問題引入,具體的數據,問題較簡單,學生很快進入了狀態,激發了學生求知的興趣引出本節內容。然后將上式作適當的變形,用字母表示敘述幾個例子,引出單項式乘以單項式法則的內容,通過類比的思想方法,由數的運算引出式的運算規律,體現了數學知識間具體與抽象、從特殊到一般的內在聯系,符合學生的認知規律,并在得出結論的過程中,與學生一起探討,注重學生的參與,從課堂學生做習題的情況來看,掌握的比較好。在講解第二個知識點時,用形象的圖形來揭示多項式乘以多項式公式,學生也較易掌握,而在突破符號這一難點時,設計讓學生先找多項式中由哪些項所組成,然后用單項式去乘以這些項,添回原先和式中省略了的加號,結果在練習中學生也突破了最容易犯的符號錯誤。并提出通過多項式乘以多項式的法則,把這個問題轉化到單項式乘以單項式中,而單項式乘以單項式又轉化到數的乘法與同底數冪的乘法,體現新知識與已學知識間的聯系,注意轉化的思想方法。整堂課中學生參與性較強,氣氛活躍,知識落實到位。
(2)不足之處
在公式的推導過程中,還應更加讓學生自己去得出結論,體現認識知識循序漸進的過程。例題的講解不妨讓學生嘗試去做,讓學生去犯錯,然后去加以糾正,以加深印象,防止同樣錯誤的發生。在小結時,還可以讓學生再次去總結本節課中常犯的錯誤。
一節平常的數學課,經過反思,會發現許多值得推敲的地方,在許多細節的地方需要精心設計,這樣才能做到以學生為主體,使學生學活學透,真正完成教學目標。
1.6 整式的乘法 篇3
單項式與多項式相乘,就是根據乘法分配律用單項式去乘多項式的每一項,轉化為單項式與單項式的乘法,然后再把所得積相加.其實,單項式與多項式相乘,就是利用乘法分配律轉化為單項式與單項式相乘,這樣新的知識就轉化成了我們已經學過的知識了.即
乘法分配律
單項式與多項式相乘 單項式
與單項式相乘 再把積相加。
. 單項式與多項式相乘時要提醒學生注意以下點:
1. 積是一個多項式,其項數,與多項式的項數相同.
2. 運算時,要注意多項式中的每一項前面的”+””-”號是性質符號, 單項式乘多項式的每一項的結果,要先確定符號,然后再把項的絕對值相乘.
單項式與多項式相乘,學生對乘法的分配律掌握得不好,出現漏乘,并且出現弄錯符號的現象,有一部分學生乘法,還有對合并同類項和同底數冪相混淆的情況,或把加法看作是同底數冪來進行計算。
1.6 整式的乘法 篇4
一、內容和內容解析
1、內容:同底數冪的乘法。
2、內容解析
同底數冪的乘法是冪的一種運算,在整式乘法中具有基礎地位。在整式的乘法中,多項式的乘法要轉化為單項式的乘法,單項式的乘法要轉化為冪的運算,而冪的運算以同底數冪的乘法為基礎。
同底數冪的乘法將同底數冪的乘法運算轉化為指數的加法運算,其中底數a可以是具體的數、單項式、多項式、分式乃至任何代數式。同底數冪的乘法是類比數的乘方來學習的,首先在具體例子的基礎上抽象出同底數冪的乘法的性質,進而通過推理加以推導,這一過程蘊含數式通性、從具體到抽象的思想方法。
基于以上分析,確定本節課的教學重點:同底數冪的乘法的運算性質。
二、目標和目標解析
1、目標
(1)理解同底數冪的乘法,會用這一性質進行同底數冪的乘法運算。
(2)體會數式通性和從具體到抽象的思想方法在研究數學問題中的作用。
2、目標解析
達成目標(1)的標志是:學生能根據乘方的意義推導出同底數冪乘法的性質,會用符號語言和文字語言表述這一性質,會用性質進行同
底數冪的乘法運算。
達成目標(2)的標志學生發現和推導同底數冪的乘法的運算性質,會用符號語言,文字語言表述這一性質,能認識到具體例子在發現結論的過程中所起的作用,能體會到數式通性在推到結論的過程中的重要作用。
三、教學問題診斷分析
在前面的學習中,學生已經學習了用字母表示數以及整式的加減運算,但是用字母表示冪以及冪的運算還是初次接觸。冪的運算抽象程度較高,不易理解,特別對于am+n的指數的理解,因為它不僅抽象程度較高,而且運算結果反映在指數上,學生第一次接觸,也很難理解。教學時,應引導學生回顧乘方的意義,從數式通性的角度理解字母表示的冪的意義,進而明確同底數冪乘法的運算性質。
本節課的教學難點是:同底數冪的運算性質的理解與推導。
四、教學過程設計
1、創設情境,提出問題
問題1: 一種電子計算機每秒可進行1014次運算,它工作103秒可進行多少次運算?
回顧與思考:什么叫乘方? an 表示的意義是什么?其中a、n、an分別叫什么?
師生活動:教師提出復習問題,學生主動思考并回答問題,并嘗試用學過的知識解決問題。
設計意圖:從實際問題導入,讓學生動手試一試,主動探索,在自己
的實踐中感受學習同底數冪的乘法的必要性,并通過有步驟、有依據的計算,為探索同底數冪的乘法的運算性質做好知識和方法的鋪墊,同時因為關于底數、指數、冪等概念是在有理數的乘法中學習的.,學生可能生疏或遺忘,在新課講解之前利用這個實際問題進行復習。
2、探索新知
問題2根據乘方的意義填空:
25×22=( )×( )=_____________=2( ) a3×a2=( )×( )=______________=a( ) 5m×5n=( )×( )=______________=5
(1) 探一探 觀察幾個式子左右兩邊底數、指數有什么變化?
(2) 說一說 根據上面式子的計算結果,你能發現有什么規律嗎?小
組交流一下想法。
(3) 猜一猜 am×an=?(m、n是正整數)
師生活動:學生獨立思考,然后小組交流思考結果。
設計意圖:從引例到“推一推”、“說一說”、“猜一猜”是一個從特殊到一般,從具體到抽象,把冪的底數與指數分兩步又有層次地進行概括抽象的過程。在這一過程中,要留給學生探索與交流的空間,讓學生在自己的實踐中獲得運算法則。
問題3 你能將你的猜想推導出來嗎?
am·an=(a·a·﹒﹒﹒·a) ·(a·a·﹒﹒﹒·a)——乘方的意義
= a·a·﹒﹒﹒·a —— 乘法結合律
=am+n ——乘方的意義
師生活動:教師提出問題,學生獨立思考并寫出推導過程,教師用多媒體展示推導過程。
設計意圖:通過推導得出同底數冪的乘法的運算性質,讓學生認識并體驗數式通性,體會由具體到抽象的數學思想方法。
追問1: 通過上面的探索與推導,你能用文字語言概括同底數冪乘
法的運算性質嗎?
師生活動:教師提出問題學生嘗試用文字語言概括同底數冪乘法的運
算性質:同底數冪相乘,底數不變,指數相加。
3、課堂練習鞏固同底數冪乘法的運算性質
練習1:計算題(結果寫成冪的形式)
1)103×104 =
2)(—7)3·(—7)8 =
3)a·a3 =
4)(a—b)2·(a—b) =
5)a·a3·a5 =
師生活動:學生獨立完成,小組合作交流答案。最后教師總結:在同底數冪的乘法運算中,底數可以是數、字母或式子。
設計意圖:讓學生通過練習,領會同底數冪乘法的運算性質。并體會底數的變化,可以是數、字母或式子。
問題4:a·a3·a5 =?同底數冪的乘法運算性質對于三個、四個······多個同底數冪相乘是否也適用呢?
師生活動:教師提出問題,學生思考回答問題,并將這一性質推廣到多個同底數冪相乘的情況。
設計意圖:通過利用文字語言概括性質以及對性質進行推廣的過程,促進學生對公式結構特征的深層理解。
練習2判斷題(若錯誤,請在題后寫出正確答案)
1)a5 · a5= 2a5( )
2)b5 + b5 = b10( )
3)x5 ·x5 = x25( )
4)y5 · y5 = 2y10( )
5)m · m3 = m3( )
6)n + n3 = n4( )
師生活動:學生思考判斷,領略“法官斷案”的快樂。
設計意圖:讓學生熟練地運用同底數冪乘法的運算性質,領略同底數冪乘法的魅力。
4、課堂小結
教師與學生一起回顧本節課所講內容以及注意事項
設計意圖:
5、布置作業
必做:課本 P105頁 第9題
選做:課本 P106頁 第13題
1.6 整式的乘法 篇5
第一課時
教學目標:
1、經歷探索整式的乘法運算法則的過程,會進行簡單的整式的乘法運算。
2、理解整式的乘法運算的算理,體會乘法分配律的作用和轉化思想,發展有條理的思考及語言表達能力。
教學重點:
整式的乘法運算。
教學難點:
推測整式乘法的運算法則。
教學過程:
一、探索練習:展示圖畫,讓學生觀察圖畫用不同的形式表示圖畫的面積。并做比較。由此得到單項式與多項式的乘法法則。觀察式子左右兩邊的特點,找出單項式與多項式的乘法法則。
跟著用乘法分配律來驗證。
單項式與多項式相乘:就是根據分配律用單項式去乘多項式的每一項再把所得的積相加。
二、例題講解:
例2:計算(1)2ab(5ab2+3a2b);
(2)解略。
三、鞏固練習:
1、判斷題:(1)3a3·5a3=15a3( )
(2)( )
(3)( )
(4)—x2(2y2—xy)=—2xy2—x3y( )
2、計算題:
(1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。
四、應用題:
1、有一個長方形,它的長為3acm,寬為(7a+2b)cm,則它的面積為多少?
五、提高題:
1、計算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。
2、已知有理數a、b、c滿足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。
3、已知:2x·(xn+2)=2xn+1—4,求x的值。
4、若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。
小結:要善于在圖形變化中發現規律,能熟練的對整式加減進行運算。作業:課本P11習題1。3教學后記:
第二課時
教學目標:
1、經歷探索多項式乘法的法則的過程,理解多項式乘法的法則,并會進行多項式乘法的運算。
2、進一步體會乘法分配律的作用和轉化的思想,發展有條理的思考和語言表達能力。
教學重點:
多項式乘法的運算。
教學難點:
探索多項式乘法的法則,注意多項式乘法的運算中“漏項”、“符號”的問題
教學過程:
一、探索練習:如圖,計算此長方形的面積有幾種方法?如何計算?小組討論。你從計算中發現了什么?多項式與多項式相乘,_____________________________。
二、鞏固練習:1、計算下列各題:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。
三、提高練習:
1、若;則m=_____,n=________
2、若,則k的值為( )(A)a+b(B)—a—b(C)a—b(D)b—a
3、已知,則a=______,b=______。
4、若成立,則X為__________。
5、計算:+2。
6、某零件如圖示,求圖中陰影部分的面積S。
7、在與的積中不含與項,求P、q的值。
一、小結:
本節課學習了多項式乘法的運算,要特別注意多項式乘法的運算中不要“漏項”、和“符號”的正確處理。
六、作業:第28頁習題 1、2
1.6 整式的乘法 篇6
內容:
整式的乘法單項式乘以多項式 P58—59
課型:
新授
時間:
學習目標:
1、在具體情景中,了解單項式和多項式相乘的意義。
2、在通過學生活動中,理解單項式和多項式相乘的法則,會用它們進行計算。
3、培養學生有條理的思考和表達能力。
學習重點:
單項式乘以多項式的法則
學習難點:
對法則的理解
學習過程
1、學習準備
1、敘述單項式乘以單項式的法則
2、計算
(1)(— a2b) (2ab)3=
(2) (—2x2y)2 (— xy)—(—xy)3(—x2)
3、舉例說明乘法分配律的應用。
2、合作探究
(一)獨立思考,解決問題
1、 問題: 一個施工隊修筑一條路面寬為n m的公路,第一天修筑 a m長,第二天修筑長 b m,第三天修筑長 c m,3天工修筑路面的面積是多少?
結合圖形,完成填空。
算法一:3天共修筑路面的總長為(a+b+c)m,因為路面的寬為bm,所以3天共修筑路面 m2。
算法二:先分別計算每天修筑路面的面積,然后相加,則3天修路面 m2。
因此,有 = 。
3、你能用字母表示乘法分配律嗎?
4、你能嘗試總結單項式乘以多項式的法則嗎?
(二)師生探究,合作交流
1、例3 計算:
(1) (—2x) (—x2x+1) (2)a(a2+a)— a2 (a—2)
2、練一練
(1)5x(3x+4) (2) (5a2 a+1)(—3a)
(3)x(x2+3)+x2(x—3)—3x(x2x—1)
(4)(a)(—2ab)+3a(ab—b—1))
(三)學習體會
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?
(四)自我測試
1、教科書P59 練習 3,結合解題,體會單項式乘以多項式的幾何意義。
2、判斷題
(1)—2a(3a—4b) =—6a2—8ab ( )
(2) (3x2—xy—1) x =x3 —x2y—x ( )
(3)m2— (1— m) = m2— — m ( )
3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于 ( )
A、—1 B、0 C、1 D、無法確定
4、計算(20xx賀州中考)
(—2a)( a3 —1) =
5、(3m)2(m2+mn—n2)=
(五)應用拓展
1、計算
(1)2a(9a2—2a+3)—(3a2) (2a—1)
(2)x(x—3)+2x(x—3)=3(x2—1)
2、若一個梯形的上底長(4m+3n)cm,下底長(2m+n)cm,高為3m2n cm,求此梯形的面積。
3、一塊邊長為xcm的正方形地磚,因需要被裁掉一塊2cm寬的長條,為剩下部分面積是多少?