中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 教案下載 > 數學教案 > 初中數學教案 > 七年級數學教案 > 有理數的除法(精選12篇)

有理數的除法

發布時間:2023-12-30

有理數的除法(精選12篇)

有理數的除法 篇1

  教學目標 

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點 是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  教學設計示例

  一、素質教育目標

  (一)知識教學點

  1.了解有理數除法的定義.

  2.理解倒數的意義.

  3.掌握有理數除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

  2.培養學生運用數學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數的概念.

  2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

  3.疑點:對零不能作除數與零沒有倒數的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟 

  (一)創設情境,復習導入  

  師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

  (二)探索新知,講授新課

  1.倒數.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

  師問:兩個數乘積是1,這兩個數有什么關系?

  學生活動:乘積是1的兩個數互為倒數.(板書)

  師問:0有倒數嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

  師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

  提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

  【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數的倒數:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

  2.

  計算:8÷(-4).

  計算:8×=? (-2)

  ∴8÷(-4)=8×.

  再嘗試:-16÷(-2)=? -16×=?

  師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調后板書:

  [板書]

  【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)÷.

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)÷; (2)(-6.5)÷0.13;

  (3)÷; (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

  提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書]

  2.兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數,都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養能力

  回顧例1   計算:(1)(-36)÷9; (2)÷.

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

  提出問題:-36:9=?;:=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2  化簡下列分數

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3  計算

  (1)÷(-6); (2)-3.5÷×;

  (3)(-6)÷(-4)×.

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

  如在(1)÷(-6)中.

  根據方法①÷(-6)=×=.

  根據方法②÷(-6)=(24+)×=4+=.

  讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數的概念,回答問題:

  1.的倒數是__________________;

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數為__________,相反數為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數,則;

  (7)或、互為相反數且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業 

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)×÷;

  (2)-6÷(-0.25)×.

  3.當,,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數等于它本身的數是______________.

  (2)互為相反數的數(0除外)商是________________.

  【教法說明】必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計 

有理數的除法 篇2

  教學目標 

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點 是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  教學設計示例

  一、素質教育目標

  (一)知識教學點

  1.了解有理數除法的定義.

  2.理解倒數的意義.

  3.掌握有理數除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

  2.培養學生運用數學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數的概念.

  2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

  3.疑點:對零不能作除數與零沒有倒數的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟 

  (一)創設情境,復習導入  

  師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

  (二)探索新知,講授新課

  1.倒數.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

  師問:兩個數乘積是1,這兩個數有什么關系?

  學生活動:乘積是1的兩個數互為倒數.(板書)

  師問:0有倒數嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

  師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

  提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

  【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數的倒數:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

  2.

  計算:8÷(-4).

  計算:8×=? (-2)

  ∴8÷(-4)=8×.

  再嘗試:-16÷(-2)=? -16×=?

  師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調后板書:

  [板書]

  【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)÷.

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)÷; (2)(-6.5)÷0.13;

  (3)÷; (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

  提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書]

  2.兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數,都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養能力

  回顧例1   計算:(1)(-36)÷9; (2)÷.

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

  提出問題:-36:9=?;:=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2  化簡下列分數

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3  計算

  (1)÷(-6); (2)-3.5÷×;

  (3)(-6)÷(-4)×.

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

  如在(1)÷(-6)中.

  根據方法①÷(-6)=×=.

  根據方法②÷(-6)=(24+)×=4+=.

  讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數的概念,回答問題:

  1.的倒數是__________________;

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數為__________,相反數為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數,則;

  (7)或、互為相反數且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業 

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)×÷;

  (2)-6÷(-0.25)×.

  3.當,,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數等于它本身的數是______________.

  (2)互為相反數的數(0除外)商是________________.

  【教法說明】必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計 

有理數的除法 篇3

  學科:數學       學段:初中教材版本:人民教育出版社年級:七年級課題:1.4.2有理數的除法(1) 教學設計:

  1.4.2有理數的除法

  (第一課時)

  一、教學目標1、知識與技能:掌握有理數除法則,會進行有理數的除法運算及分數的化簡。2、過程與方法:通過學習有理數除法法則,體會轉化思想,會將乘除混合運算統一為乘法算。3、情感與價值觀:培養學生勇于探索積極思考的良好學習習慣。二、教學設想前面已學過有理數加法、減法、乘法,這些運算為學習有理數除法作了輔墊,而除法在小學時已經接觸到過,學生也知道除法是乘法的逆運算,本課的重點是有理數的除法法則,通過小組討論、小組合作,不僅能突破重點,也能培養學生觀察問題,分析問題和解決問題的能力,由于有理數除法是一種運算,在上課時,既要減少一些繁難的例題,又要通過一定的練習讓學生能熟練地運用法則,進行準確計算。三、教材分析有理數的除法意義與以前小學學過的一樣,所以教材中沒有單獨強調有理數除法意義。教材先給出“除以一個數等于乘這個數的倒數”這一形式的除法法則,說明乘法與除法的關系,并用a÷b=a. (b≠0)把這個關系簡明地表示出來。考慮到具體運算的不同情況,教材又從除法可以化成乘法,給出與乘法類似的法則,以便于學生根據具體情況靈活選用。并以填空的形式出現,讓學生討論,合作探究,充分發揮他們的主觀能動性。四、重點、難點1、重點:有理數的除法法則2、難點:靈活運用有理數除法的兩種法則五、教學方法:講解與練習相結合六、教學過程:

  教師活動

  學生活動

  設計意圖(一)復習舊知,導入新知1、求下列各數的倒數(1)- ;   (2)-0.125;    (3)-1 2、小學里除法的意義是什么?小學算術中除法怎么計算?引入負數后,又如何計算有理數的除法呢? 上黑板演示 回憶、思考、回答學好有理數的除法必須以學好求一個有理數的倒數為條件,所以在這里我拋磚引玉,為學生學好有理數的除法法則奠定基礎。 (二)探索新知1、探索有理數除法法則一【問題一】 例如8÷(-4)怎樣求?根據除法意義填空:∵ -2    ×(-4)=8∴8÷(-4)=   -2    ①     8×(-1/4)=-2  ②       由①、②可得到什么等式8÷(-4)= 8×(-1/4)③讓學生觀察上面的③式中等號的兩邊有哪些相同與不同的地方?相同點:被除數不變不同點:①除號變成乘號          ②除數變成它的倒數探索:換其它數的除法進行類似討論:-10÷(-4)結果:               倒數-10÷(-4)=-10×(- )               除轉化為乘【問題]2】通過上面的探索,你能說出有理數的除法法則嗎?(板書)有理數的除法法則一:除以一個不等于0的數,等于乘這個數的倒數可表示為:a÷b=a. (b≠0)好奇思考 討論 發言 合做交流 發言 分小組討論、探索,合做交流 思考歸納總結得出結論 引導學生思考,激發學生的求知欲 給學生思考的方向,降低探索的難度 培養學生觀察分析及歸納能力通過探索,使學生對法則更深刻的理解。 注重學生動腦、動口、動手相結合,引導學生自己發現法則,從中獲得成功的體驗。2、探索有理數除法法則二【問題3】(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?(板書)有理數的除法法則二:  兩數相除同號為正,異號為負,并把絕對值相除。0除以任何一個不為0的數,都得0。思考,小組討論探索,合做交流并回答問題 通過小組討論、小組合作,不僅能突破重難點,也能培養學生觀察問題,分析問題和解決問題的能力,(三)應用新知例5、計算:(1)(-36)÷9;(2)(- )÷(- )通過上面的例題讓學生思考什么情況用有理數除法法則二計算方便(當被除數能被除數整除時用法則二計算方便)。 例6:化簡下列分數:(1) ;(2)  分析:分數可以理解為除法,所以要按除法的法則進行,可以直接除也可以轉化為乘法,利用乘法的運算性質簡化分數。例7計算(1)(-125 )÷(-5); (2)-2.5÷ ×(- )   分析引導:第(1)題是分數除法,應轉化為乘法,由于-125 化為假分數,計算量大,可以把125 寫成125+ 后用分配律。第(2)題是乘除混合運算,應統一為乘法,以便約分。獨立思考 分析,把過程完整的寫出來 獨立思考完成 思考、分組討論各組代表發言 讓學生及時鞏固新知識,并檢查學生對有理數除法法則的靈活運用能力讓學生理解滲透了除法、分數之間的互相轉化,并且通過這種轉化,常常可能簡化計算. 提高學生對法則的靈活運用能力及解決問題能力。      (四)鞏固練習1、計算:(1)(-18)÷6;      (2)(-63)÷(-7)     (3)1÷(-9)     (4)0÷(-8)2、化簡:     (1) ;  (2) ;(3) 。3、計算:              (1) ÷9             (2)(-12)÷(-4)÷( )            (3)( )÷( )÷(-0.25)獨立思考,并把過程完整的寫出來。鞏固和理解有理數除法法則 讓學生應用新知識解決問題,既鞏固了新知識又培養學生的 應用能力和提高他們的思維能力     (五)課堂小結由學生歸納本節課所學的內容,談一談本節課得到了什么啟示。(六)作業:教材38-39頁習題1.4第4題第6題和第7題。思考,積極發言 讓學生對有理數的除法有一個系統的認識,培養學生歸納、概括能力通過作業及時反饋學生掌握有理數除法法則和應用法則的情況(七)板書設計

  1.4.2有理數的除法1一、有理數的法則1二、有理數的法則2三、例6    例7    例8板書設計也是教學信息傳遞的一種途徑,簡單明了的板書會讓學生更好的把握整節課的知識結構。 評價分析:    本節課通過有理數除法法則的探索,使學生從不同的思維角度掌握理解法則,學生從中深刻地領會到探索過程中所蘊含的數學思想,培養了學生思維的深刻性、敏銳性、廣闊性,通過命題講解及課堂練習,使學生既鞏固了知識,又形成了技能,在此基礎上,通過民主和諧的課堂氛圍,培養了學生自主學習、合作交流的學習習慣,也培養了學生勇于探索不斷創新的思維品質。

有理數的除法 篇4

  教學目標 

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點 是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  教學設計示例

  一、素質教育目標

  (一)知識教學點

  1.了解有理數除法的定義.

  2.理解倒數的意義.

  3.掌握有理數除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

  2.培養學生運用數學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數的概念.

  2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

  3.疑點:對零不能作除數與零沒有倒數的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟 

  (一)創設情境,復習導入  

  師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

  (二)探索新知,講授新課

  1.倒數.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

  師問:兩個數乘積是1,這兩個數有什么關系?

  學生活動:乘積是1的兩個數互為倒數.(板書)

  師問:0有倒數嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

  師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

  提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

  【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數的倒數:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

  2.

  計算:8÷(-4).

  計算:8×=? (-2)

  ∴8÷(-4)=8×.

  再嘗試:-16÷(-2)=? -16×=?

  師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調后板書:

  [板書]

  【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)÷.

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)÷; (2)(-6.5)÷0.13;

  (3)÷; (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

  提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書]

  2.兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數,都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養能力

  回顧例1   計算:(1)(-36)÷9; (2)÷.

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

  提出問題:-36:9=?;:=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2  化簡下列分數

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3  計算

  (1)÷(-6); (2)-3.5÷×;

  (3)(-6)÷(-4)×.

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

  如在(1)÷(-6)中.

  根據方法①÷(-6)=×=.

  根據方法②÷(-6)=(24+)×=4+=.

  讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數的概念,回答問題:

  1.的倒數是__________________;

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數為__________,相反數為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數,則;

  (7)或、互為相反數且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業 

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)×÷;

  (2)-6÷(-0.25)×.

  3.當,,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數等于它本身的數是______________.

  (2)互為相反數的數(0除外)商是________________.

  【教法說明】必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計 

有理數的除法 篇5

  教學目標

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  教學設計示例

  一、素質教育目標

  (一)知識教學

  1.了解有理數除法的定義.

  2.理解倒數的意義.

  3.掌握有理數除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

  2.培養學生運用數學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數的概念.

  2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

  3.疑點:對零不能作除數與零沒有倒數的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟

  (一)創設情境,復習導入  

  師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

  (二)探索新知,講授新課

  1.倒數.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

  師問:兩個數乘積是1,這兩個數有什么關系?

  學生活動:乘積是1的兩個數互為倒數.(板書

  師問:0有倒數嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

  師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

  提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

  【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數的倒數:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

  2.

  計算:8÷(-4).

  計算:8×=? (-2)

  ∴8÷(-4)=8×.

  再嘗試:-16÷(-2)=? -16×=?

  師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調后板書

  [板書

  【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)÷.

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)÷; (2)(-6.5)÷0.13;

  (3)÷; (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

  提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書

  2.兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數,都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養能力

  回顧例1   計算:(1)(-36)÷9; (2)÷.

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

  提出問題:-36:9=?;:=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2  化簡下列分數

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3  計算

  (1)÷(-6); (2)-3.5÷×;

  (3)(-6)÷(-4)×.

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

  如在(1)÷(-6)中.

  根據方法①÷(-6)=×=.

  根據方法②÷(-6)=(24+)×=4+=.

  讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數的概念,回答問題:

  1.的倒數是__________________;

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數為__________,相反數為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數,則;

  (7)或、互為相反數且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業 

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)×÷;

  (2)-6÷(-0.25)×.

  3.當,,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數等于它本身的數是______________.

  (2)互為相反數的數(0除外)商是________________.

  【教法說明】必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計

有理數的除法 篇6

  一、目的要求

  1.使學生了解有理數除法的意義,掌握有理數除法法則,會進行有理數的除法運算。

  2.使學生理解有理數倒數的意義,能熟練地進行有理數乘除混合運算。

  二、內容分析

  有理數除法的學習是學生在小學已掌握了倒數的意義,除法的意義和運算法則,乘除的混合運算法則,知道0不能作除數的規定和在中學已學過有理數乘法的基礎上進行的。因而教材首先根據除法的意義計算一個具體的有理數除法的實例,得出有理數除法可以利用乘法來進行的結論,進而指出有理數范圍內倒數的定義不變,這樣,就得出了有理數除法法則。接下來,通過幾個實例說明有理數除法法則,并根據除法與乘法的關系,進一步得到了與乘法類似的法則。最后,通過幾個例題的教學,既說明了有理數除法的另一種形式,也指出了除法與分數互化的關系,同時,還指出有理數的除法化成有理數的乘法以后,可以利用有理數乘法的運算性質簡化運算,這樣,就說明了有理數乘除的混合運算法則。

  本節課的重點是除法法則和倒數概念;難點是對零不能作除數與零沒有倒數的理解以及乘法與除法的互化,關鍵是,實際運算時,先確定商的符號,然后再根據不同情況采取適當的方法求商的絕對值,因而教學時,要讓學生通過實例理解有理數除法與小學除法法則基本相同,只是增加了符號的變化。

  三、教學過程

  復習提問:

  1.小學學過的倒數意義是什么?4和的倒數分別是什么?0為什么沒有倒數。

  答:乘積是1的兩個數互為倒數,4的倒數是,的倒數是,0沒有倒數是因為沒有一個數與0相乘等于1等于。

  2.小學學過的除法的意義是什么?10÷5是什么意思?商是幾?0÷5呢?

  答:除法是已知兩個因數的積與其中一個因數,求另一個因數的運算,15÷5表示一個數與5的積是15,商是3,0÷5表示一個數與5的積是0,商是0。

  3.小學學過的除法和乘法的關系是什么?

  答:除以一個數等于乘上這個數的倒數。

  4.5÷0=?0÷0=?

  答:0不能作除數,這兩個除式沒有意義。

  新課講解:

  與小學學過的一樣,除法是乘法的逆運算,這里與小學不同的是,被除數和除數可以是任意有理數(零作除數除外)。

  引例:計算:8×(-)和8÷(-4)

  8×(-)=-2,

  8÷(-4),由除法的意義,就是要求一個數,使它與-4相乘,積為8,

  ∵(-4)×(-2)=8,

  ∴8÷(-4)=-2。

  從而,8÷(-4)=8×(-),

  同樣,有(-8)÷4=(-8)×,

  (-8)÷(-4)=(-8)×(-),

  這說明,有理數除法可以利用乘法來進行。

  又(-4)×=-1,4×=1,

  由4和互為倒數,說明(-4)和(-)也互為倒數。

  從而對于有理數仍然有:乘積為1的兩個數互為倒數。

  提問:-2,-,-1的倒數各是什么?為什么?

  注意:求一個整數的倒數,直接寫成這個數的數分之一即可,求一個分數的倒數,只要把分子分母顛倒一下即可,一般地,a(a≠0)的倒數是,0沒有倒數。

  由上面的引例和倒數的意義,可得到與小學一樣的有理數除法法則,則教科書第101頁方框里的黑體字,用式子表示,就是a÷b=a·(b≠0)。

  注意:有理數除法法則也表示了有理數除法和有理數乘法可以互相轉化的關系,與小學一樣,也規定:0不能作除數。

  例1計算。(見教科書第103頁例1)

  解答過程見教科書第103頁例1。

  閱讀教科書第102頁至第103頁。

  課堂練習:教科書第104頁練習第l,2,3題。

  提問:l.正數的倒數是正數,負數的倒數是負數,零的倒數是零,這句話正確嗎?

  (答:略)

  2.兩數相除,商的符號如何確定?為什么?商的絕對值呢?

  答:商的符號由兩個數的符號確定,因為除以一個數等于乘以這個數的倒數,當兩個不等于零的數互為倒數時,它們的符號相同。故兩數相除,仍是同號得正,異號得負,商的絕對值則可由兩數的絕對值相除而得到。

  從上所述,可得到有理數除法與乘法類似的法則,見教科書第102頁上的黑體字。

  在進行有理數除法運算時,既可以利用乘法(把除數化為它的倒數),也可以直接(特別是在能整除時)進行,具體利用哪種方式,根據情況靈活選用。

  例2見教科書第104頁例2。

  解答過程見教科書第104頁例2。

  注意:除法可以表示成分數和比的形式。如84÷(-7)可以寫成或84:(-7);反過來,分數和比也可以化為除法,如可以寫成(-12)÷3,15:6可以寫成15÷6。這說明,除法、分數和比相互可以互相轉化,并且通過這種轉化,常常可以簡化計算。

  例3見教科書第105頁例3。

  分析:(l)有兩種算法,一是將寫成,然后用除法法則或利用乘法進行計算;二是將寫成24+,然后利用分配律進行計算。

  對于(2),是乘除混合運算,可以接從左到右的順序依次計算,也可以把除法化為乘法,按乘法法則運算。

  解答過程見教科書第105頁例3。

  講解教科書例3后的兩個注意點。

  課堂練習:見教科書第105頁練習。

  第1題可直接約分,也可化為除法。

  第2題可先化成乘法,并利用乘法的運算律簡化運算。

  課堂小結:

  閱讀教科書第102頁至第105頁上的內容,理解倒數的意義,除法法則的兩種形式及教材上的注意點。

  提問:(l)倒數的意義是什么?有理數除法法則是什么?如何進行有理數的除法運算?(兩種形式)如何進行有理數乘除混合運算?

  (2)0能作除數嗎?什么數的倒數是它本身?的倒數是什么?(a≠0)

  四、課外作業

  習題2.9a組第1,2,3,4,5題的雙數小題,第6題。

  選作題:習題2.9b組第1,2,3題雙數小題。

有理數的除法 篇7

  教學目標

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  第 1 2 頁  

有理數的除法 篇8

  “有理數的除法”教學設計

  一、目的要求

  1.使學生了解有理數除法的意義,掌握有理數除法法則,會進行有理數的除法運算。

  2.使學生理解有理數倒數的意義,能熟練地進行有理數乘除混合運算。

  二、內容分析

  有理數除法的學習是學生在小學已掌握了倒數的意義,除法的意義和運算法則,乘除的混合運算法則,知道0不能作除數的規定和在中學已學過有理數乘法的基礎上進行的。因而教材首先根據除法的意義計算一個具體的有理數除法的實例,得出有理數除法可以利用乘法來進行的結論,進而指出有理數范圍內倒數的定義不變,這樣,就得出了有理數除法法則。接下來,通過幾個實例說明有理數除法法則,并根據除法與乘法的關系,進一步得到了與乘法類似的法則。最后,通過幾個例題的教學,既說明了有理數除法的另一種形式,也指出了除法與分數互化的關系,同時,還指出有理數的除法化成有理數的乘法以后,可以利用有理數乘法的運算性質簡化運算,這樣,就說明了有理數乘除的混合運算法則。

  本節課的重點是除法法則和倒數概念;難點是對零不能作除數與零沒有倒數的理解以及乘法與除法的互化,關鍵是,實際運算時,先確定商的符號,然后再根據不同情況采取適當的方法求商的絕對值,因而教學時,要讓學生通過實例理解有理數除法與小學除法法則基本相同,只是增加了符號的變化。

  三、教學過程 

  復習提問:

  1.小學學過的倒數意義是什么?4和的倒數分別是什么?0為什么沒有倒數。

  答:乘積是1的兩個數互為倒數,4的倒數是,的倒數是,0沒有倒數是因為沒有一個數與0相乘等于1等于。

  2.小學學過的除法的意義是什么?10÷5是什么意思?商是幾?0÷5呢?

  答:除法是已知兩個因數的積與其中一個因數,求另一個因數的運算,15÷5表示一個數與5的積是15,商是3,0÷5表示一個數與5的積是0,商是0。

  3.小學學過的除法和乘法的關系是什么?

  答:除以一個數等于乘上這個數的倒數。

  4.5÷0=?0÷0=?

  答:0不能作除數,這兩個除式沒有意義。

  新課講解:

  與小學學過的一樣,除法是乘法的逆運算,這里與小學不同的是,被除數和除數可以是任意有理數(零作除數除外)。

  引例:計算:8×(-)和8÷(-4)

  8×(-)=-2,

  8÷(-4),由除法的意義,就是要求一個數,使它與-4相乘,積為8,

  ∵(-4)×(-2)=8,

  ∴8÷(-4)=-2。

  從而,8÷(-4)=8×(-),

  同樣,有(-8)÷4=(-8)×,

  (-8)÷(-4)=(-8)×(-),

  這說明,有理數除法可以利用乘法來進行。

  又(-4)×=-1,4×=1,

  由4和互為倒數,說明(-4)和(-)也互為倒數。

  從而對于有理數仍然有:乘積為1的兩個數互為倒數。

  提問:-2,-,-1的倒數各是什么?為什么?

  注意:求一個整數的倒數,直接寫成這個數的數分之一即可,求一個分數的倒數,只要把分子分母顛倒一下即可,一般地,a(a≠0)的倒數是,0沒有倒數。

  由上面的引例和倒數的意義,可得到與小學一樣的有理數除法法則,則教科書第101頁方框里的黑體字,用式子表示,就是a÷b=a·(b≠0)。

  注意:有理數除法法則也表示了有理數除法和有理數乘法可以互相轉化的關系,與小學一樣,也規定:0不能作除數。

  例1計算。(見教科書第103頁例1)

  解答過程見教科書第103頁例1。

  閱讀教科書第102頁至第103頁。

  課堂練習:教科書第104頁練習第l,2,3題。

  提問:l.正數的倒數是正數,負數的倒數是負數,零的倒數是零,這句話正確嗎?

  (答:略)

  2.兩數相除,商的符號如何確定?為什么?商的絕對值呢?

  答:商的符號由兩個數的符號確定,因為除以一個數等于乘以這個數的倒數,當兩個不等于零的數互為倒數時,它們的符號相同。故兩數相除,仍是同號得正,異號得負,商的絕對值則可由兩數的絕對值相除而得到。

  從上所述,可得到有理數除法與乘法類似的法則,見教科書第102頁上的黑體字。

  在進行有理數除法運算時,既可以利用乘法(把除數化為它的倒數),也可以直接(特別是在能整除時)進行,具體利用哪種方式,根據情況靈活選用。

  例2見教科書第104頁例2。

  解答過程見教科書第104頁例2。

  注意:除法可以表示成分數和比的形式。如84÷(-7)可以寫成或84:(-7);反過來,分數和比也可以化為除法,如可以寫成(-12)÷3,15:6可以寫成15÷6。這說明,除法、分數和比相互可以互相轉化,并且通過這種轉化,常常可以簡化計算。

  例3見教科書第105頁例3。

  分析:(l)有兩種算法,一是將寫成,然后用除法法則或利用乘法進行計算;二是將寫成24+,然后利用分配律進行計算。

  對于(2),是乘除混合運算,可以接從左到右的順序依次計算,也可以把除法化為乘法,按乘法法則運算。

  解答過程見教科書第105頁例3。

  講解教科書例3后的兩個注意點。

  課堂練習:見教科書第105頁練習。

  第1題可直接約分,也可化為除法。

  第2題可先化成乘法,并利用乘法的運算律簡化運算。

  課堂小結:

  閱讀教科書第102頁至第105頁上的內容,理解倒數的意義,除法法則的兩種形式及教材上的注意點。

  提問:(l)倒數的意義是什么?有理數除法法則是什么?如何進行有理數的除法運算?(兩種形式)如何進行有理數乘除混合運算?

  (2)0能作除數嗎?什么數的倒數是它本身?的倒數是什么?(a≠0)

  四、課外作業 

  習題2.9A組第1,2,3,4,5題的雙數小題,第6題。

  選作題:習題2.9B組第1,2,3題雙數小題。

有理數的除法 篇9

  教學目標

  1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算;

  2.了解倒數概念,會求給定有理數的倒數;

  3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。

  教學建議

  (一)重點、難點分析

  本節教學的重點是熟練進行運算,教學難點 是理解法則。

  1.有理數除法有兩種法則。法則1:除以一個數等于乘以這個數的倒數。是把除法轉化為乘法來解決問題。法則2是把有理數除法納入有理數運算的統一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據具體的情況選用,一般在不能整除的情況下應用第一法則。如;在有整除的情況下,應用第二個法則比較方便,如;在能整除的情況下,應用第二個法則比較方便,如,如寫成就麻煩了。

  (二)知識結構

  (三)教法建議

  1.學生實際運算時,老師要強調先確定商的符號,然后在根據不同情況采取適當的方法求商的絕對值,求商的絕對值時,可以直接除,也可以乘以除數的倒數。

  2.關于0不能做除數的問題,讓學生結合小學的知識接受這一認識就可以了,不必具體講述0為什么不能做除數的理由。

  3.理解倒數的概念

  (1)根據定義乘積為1的兩個數互為倒數,即:,則互為倒數。如:,則2與,-2與互為倒數。

  (2)由倒數的定義,我們可以得到求已知數倒數的一種基本方法:即用1除以已知數,所得商就是已知數的倒數。如:求的倒數:計算,-2就是的倒數。一般我們求已知數的倒數很少用這種方法,實際應用時我們常把已知數看作分數形式,然后把分子、分母顛倒位置,所得新數就是原數的倒數。如-2可以看作,分子、分母顛倒位置后為,就是的倒數。

  (3)倒數與相反數這兩個概念很容易混淆。要注意區分。首先倒數是指乘積為1的兩個數,而相反數是指和為0的兩個數。如:,2與互為倒數,2與-2互為相反數。其次互為倒數的兩個數符號相同,而互為相反數符號相反。如:-2的倒數是,-2的相反數是+2;另外0沒有倒數,而0的相反數是0。

  4.關于倒數的求法要注意:

  (1)求分數的倒數,只要把這個分數的分子、分母顛倒位置即可.

  (2)正數的倒數是正數,負數的倒數仍是負數.

  (3)負倒數的定義:乘積是-1的兩個數互為負倒數.

  教學設計示例

  一、素質教育目標

  (一)知識教學點

  1.了解有理數除法的定義.

  2.理解倒數的意義.

  3.掌握有理數除法法則,會進行運算.

  (二)能力訓練點

  1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.

  2.培養學生運用數學思想指導思維活動的能力.

  (三)德育滲透點

  通過學習有理數除法運算、感知數學知識具有普遍聯系性、相互轉化性.

  (四)美育滲透點

  把小學算術里的乘法法則推廣到有理數范圍內,體現了知識體系的完整美.

  二、學法引導

  1.教學方法:遵循啟發式教學原則,注意創設問題情境,精心構思啟發導語 并及時點撥,使學生主動發展思維和能力.

  2.學生學法:通過練習探索新知→歸納除法法則→鞏固練習

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數的概念.

  2.難點:有理數除法確定商的符號后,怎樣根據不同的情況來取適當的方法求商的絕對值.

  3.疑點:對零不能作除數與零沒有倒數的理解.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、自制膠片、彩粉筆.

  六、師生互動活動設計

  教師出示探索性練習,學生討論歸納除法法則,教師出示鞏固性練習,學生以多種形式完成.

  七、教學步驟

  (一)創設情境,復習導入

  師:以上我們學習了有理數的乘法,這節我們應該學習,板書課題.

  【教法說明】同小學算術中除法一樣—除以一個數等于乘以這個數的倒數,所以必須以學好求一個有理數的倒數為基礎學習.

  (二)探索新知,講授新課

  1.倒數.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  學生活動:口答以上題目.

  【教法說明】在有理數乘法的基礎上,學生很容易地做出這幾個題目,在題目的選擇上,注意了數的全面性,即有正數、0、負數,又有整數、分數,在數的變化中,讓學生回憶、體會出求各種數的倒數的方法.

  師問:兩個數乘積是1,這兩個數有什么關系?

  學生活動:乘積是1的兩個數互為倒數.(板書)

  師問:0有倒數嗎?為什么?

  學生活動:通過題目0×( )=1得出0乘以任何數都不得1,0沒有倒數.

  師:引入負數后,乘積是1的兩個負數也互為倒數,如-4與,與互為倒數,即的倒數是.

  提出問題:根據以上題目,怎樣求整數、分數、小數的倒數?

  【教法說明】教師注意創設問題情境,讓學生參與思考,循序漸進地引出,對于有理數也有倒數是.對于怎樣求整數、分數、小數的倒數,學生還很難總結出方法,提出這個問題是讓學生帶著問題來做下組練習.

  (出示投影2)

  求下列各數的倒數:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  學生活動:通過思考口答這6小題,討論后得出,求整數的倒數是用1除以它,求分數的倒數是分子分母顛倒位置;求小數的倒數必須先化成分數再求.

  2.

  計算:8÷(-4).

  計算:8×=? (-2)

  ∴8÷(-4)=8×.

  再嘗試:-16÷(-2)=? -16×=?

  師:根據以上題目,你能說出怎樣計算嗎?能用含字母的式子表示嗎?

  學生活動:同桌互相討論.(一個學生回答)

  師強調后板書:

  [板書]

  【教法說明】通過學生親自演算和教師的引導,對有理數除法法則及字母表示有了非常清楚的認識,教師放手讓學生總結法則,尤其是字母表示,訓練學生的歸納及口頭表達能力.

  (三)嘗試反饋,鞏固練習

  師在黑板上出示例題.

  計算(1)(-36)÷9, (2)÷.

  學生嘗試做此題目.

  (出示投影3)

  1.計算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.計算:

  (1)÷; (2)(-6.5)÷0.13;

  (3)÷; (4)÷(-1).

  學生活動:1題讓學生搶答,教師用復合膠片顯示結果.2題在練習本上演示,兩個同學板演(教師訂正).

  【教法說明】此組練習中兩個題目都是對的直接應用.1題是整數,利用口答形式訓練學生速算能力.2題是小數、分數略有難度,要求學生自行演算,加強運算的準確性,2題(2)小題必須把小數都化成分數再轉化成乘法來計算.

  提出問題:(1)兩數相除,商的符號怎樣確定,商的絕對值呢?(2)0不能做除數,0做被除數時商是多少?

  學生活動:分組討論,1—2個同學回答.

  [板書]

  2.兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何不等于0的數,都得0.

  【教法說明】通過上組練習的結果,不難看出與有理數乘法有類似的法則,這個法則的得出為計算有理數除法又添了一種方法,這時教師要及時指出,在做有理數除法的題目時,要根據具體情況,靈活運用這兩種方法.

  (四)變式訓練,培養能力

  回顧例1 計算:(1)(-36)÷9; (2)÷.

  提出問題:每個題目你想采用哪種法則計算更簡單?

  學生活動:(1)題采用兩數相除,異號得負并把絕對值相除的方法較簡單.

  (2)題仍用除以一個數等于乘以這個數的倒數較簡單.

  提出問題:-36:9=?;:=?它們都屬于除法運算嗎?

  學生活動:口答出答案.

  (出示投影4)

  例2 化簡下列分數

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3 計算

  (1)÷(-6); (2)-3.5÷×;

  (3)(-6)÷(-4)×.

  學生活動:例2讓學生口答,例3全體同學獨立計算,三個學生板演.

  【教法說明】例2是檢查學生對有理數除法法則的靈活運用能力,并滲透了除法、分數、比可互相轉化,并且通過這種轉化,常常可能簡化計算.例3培養學生分析問題的能力,優化學生思維品質:

  如在(1)÷(-6)中.

  根據方法①÷(-6)=×=.

  根據方法②÷(-6)=(24+)×=4+=.

  讓學生區分方法的差異,點明方法②非常簡便,肯定當除法轉化成乘法時,可以利用有理數乘法運算律簡化運算.(2)(3)小題也是如此.

  (五)歸納小結

  師:今天我們學習了及倒數的概念,回答問題:

  1.的倒數是__________________;

  2.;

  3.若、同號,則;

  若、異號,則;

  若,時,則;

  學生活動:分組討論,三個學生口答.

  【教法說明】對這節課全部知識點的回顧不是教師單純地總結,而是讓學生在思考回答的過程中自己把整節內容進行了梳理,并且上升到了用字母表示的數學式子,逐步培養學生用數學語言表達數學規律的能力.

  八、隨堂練習

  1.填空題

  (1)的倒數為__________,相反數為____________,絕對值為___________

  (2)(-18)÷(-9)=_____________;

  (3)÷(-2.5)=_____________;

  (4);

  (5)若,是;

  (6)若、互為倒數,則;

  (7)或、互為相反數且,則,;

  (8)當時,有意義;

  (9)當時,;

  (10)若,,則,和符號是_________,___________.

  2.計算

  (1)-4.5÷×;

  (2)(-12)÷〔(-3)+(-15)〕÷(+5).

  九、布置作業

  (一)必做題:1.仿照例1、例2自編2道題,同桌交換解答.

  2.計算:(1)×÷;

  (2)-6÷(-0.25)×.

  3.當,,時求的值.

  (二)選做題:1.填空:用“>”“<”“=”號填空

  (1)如果,則,;

  (2)如果,則,;

  (3)如果,則,;

  (4)如果,則,;

  2.判斷:正確的打“√”錯的打“×”

  (1)( );

  (2)( ).

  3.(1)倒數等于它本身的數是______________.

  (2)互為相反數的數(0除外)商是________________.

  【教法說明】必做題為本節的重點內容,首先在這節課學習的基礎上讓同學仿照例題編題,學生也有這方面的能力,極大調動了學生積極性,提高了學生運用知識的能力.

  選作題是對這節課重點內容的進一步理解和運用,為學有余力的學生提供了展示自己的機會.

  十、板書設計

有理數的除法 篇10

  一、課題 §2.9有理數的除法

  二、教學目標

  1.使學生理解有理數倒數的意義;

  2.使學生掌握有理數的除法法則,能夠熟練地進行除法運算;

  3.培養學生觀察、歸納、概括及運算能力.

  三、教學重點和難點

  重點:有理數除法法則.

  難點:

  (1)商的符號的確定.

  (2)0不能作除數的理解.

  四、教學手段

  現代課堂教學手段

  五、教學方法

  啟發式教學

  六、教學過程

  (一)、從學生原有認知結構提出問題

  1.敘述有理數乘法法則.

  2.敘述有理數乘法的運算律.

  3.計算:

  (1)3×(-2); (2)-3×5; (3)(-2)×(-5).

  (二)、導入新課

  因為3×(-2)=-6,所以3x=-6時,可以解得x=-2;

  同樣-3×5=-15,解簡易方程-3x=-15,得x=5.

  在找x的值時,就是求一個數乘以3等于-6;或者是找一個數,使它乘以-3等于-15.已知一個因數的積,求另一個因數,就是在小學學過的除法,除法是乘法的逆運算.

  三、講授新課

  1.有埋數的倒數

  0沒有倒數,(0不能作除數,分母是0沒有意義等概念在小學里是反復強調的.)

  提問:怎樣求一個數的倒數?

  答:整數可以看成分母是1的分數,求分數的倒數是把這個數的分母與分子顛倒一下即可;求一個小數的倒數,可以先把這個小數化成分

  數再求倒數.

  什么性質

  所以我們說:乘積為1的兩個數互為倒數,這個定義對有理數仍然適用.

  這里a≠0,同小學一樣,在有理數范圍內,0不能作除數,或者說0為分母時分數無意義.

  2.有理數除法法則

  利用有理數倒數的概念,我們進一步學習有理數除法.

  因為(-2)×(-4)=8,所以8÷(-4)=-2.

  由此,我們可以看出小學學過的除法法則仍適用于有理數除法,即

  除以一個數等于乘以這個數的倒數.

  0不能作除數.

  例1 計算:

  課堂練習

  (1)寫出下列各數的倒數:

  (2)計算:

  3.有理數除法的符號法則

  觀察上面的練習,引導學生總結出有理數除法的商的符號法則:

  兩數相除,同號得正,異號得負.

  掌握符號法則,有的題就不必再將除數化成倒數再去乘了,可以確定符號后直接相除,這就是第二個有理數除法法則:

  兩數相除,同號得正,異號得負,并把絕對值相除.

  0除以任何一個不為0的數,都得0.

  ≠0).利用除法法則可以化簡分數.

  例2 化簡下列分數:

  例3 計算:

  (4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

  (四)、小結

  1.指導學生看書,重點是除法法則.

  2.引導學生歸納有理數除法的一般步驟:(1)確定商的符號;(2)把除數化為它的倒數;(3)利用乘法計算結果.

  七、練習設計

  習題2.12 1、2、3、4、5、6題

  八、板書設計

  §2.9有理數的除法

  (一)知識回顧 (三)例題解析 (五)課堂小結

  例1、例2

  (二)觀察發現 (四)課堂練習 練習設計

  ,七年級數學上冊北師大版2.9有理數的除法教案

有理數的除法 篇11

  一、教學目標:

  1、熟練有理數的乘法運算并能用乘法運算律簡化運算.

  2、讓學生通過觀察、思考、探究、討論,主動地進行學習.

  3、培養學生語言表達能力以及與他人溝通、交往能力,使其逐漸熱愛數學這門課程.

  二、教學重點和難點

  教學重點:正確運用運算律,使運算簡化

  教學難點:運用運算律,使運算簡化

  三、教學過程

  一、學前準備

  1、下面兩組練習,請同學們選擇一組計算.并比較它們的結果:

  1)(-7)8 8(-7)

  [(-2)(-6)]5 (-2)[(-6)5]

  2)(- )(- ) (- )(- )

  [ (- )](-4) [(- )(-4)]

  3)

  請以小組為單位,相互檢查,看計算對了嗎?

  二、探究新知

  1、下面我們以小組為單位,仔細觀察上面的式子與結果,把你的發現相互交流交流.

  2、怎么樣,在有理數運算律中,乘法的交換律,結合律以及分配律還成立嗎?

  3、歸納、總結

  乘法交換律:兩個數相乘,交換因數的位置,積 相等 .

  即:ab= ba

  乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積 相等

  即:(ab)c= a(bc)

  乘法分配律:一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加

  即:a(b+c)=ab+bc

  三、新知應用

  1、例題

  用兩種方法計算 ( + - )12

  2、看誰算得快,算得準

  1)(-7)(- ) 2) 9 15.

  四、課堂小結

  怎么樣,這節課有什么收獲,還有那些問題沒有解決?

  乘法交換律:兩個數相乘,交換因數的位置,積 相等 .

  即:ab= ba

  乘法結合律:三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積 相等

  即:(ab)c= a(bc)

  乘法分配律:一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加

  即:a(b+c)=ab+bc

  五.作業布置

  1、(-85)(-25) 2、(- )15(-1 );

  3、( ) 4、 (7).

  5、-9(-11)+12(-9) 6、

  1.4.4 有理數的除法

有理數的除法 篇12

  一、教學目標:

  1、學會用計算器進行有理數的除法運算.

  2、掌握有理數的混合運算順序.

  3、通過探究、練習,養成良好的學習習慣

  二、教學重點和難點

  1、學習重點:有理數的混合運算

  2、學習難點:運算順序的確定與性質符號的處理

  三、教學過程

  (一)、學前準備

  1、計算

  1)(0.0318)(1.4) 2)2+(8)2

  (二)、探究新知

  1、由上面的問題1,計算方便嗎?想過別的方法嗎?

  2、由上面的問題2,你的計算方法是先算 乘除 法,再算 加減 法。

  3、結合問題1,閱讀課本P36P37頁內容(帶計算器的同學跟著操作、練習)

  4、結合問題2,你先猜想,有理數的混合運算順序應該是 先算乘除法,再算加減法 。

  5、閱讀P36,并動手做做

  三、新知應用

  1、計算

  1)、186(2) 2)11+(22)3(11)

  3)(0.1) (100)

  四.課堂小結:請你回顧本節課所學習的主要內容:

  1、有理數的混合運算順序應該是 先算乘除法,再算加減法 。

  2、計算器的使用。

  五、作業 1、P39第7題(4、5、7、8)、 第8題

有理數的除法(精選12篇) 相關內容:
  • 有理數的除法

    教學目標 1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算; 2.了解倒數概念,會求給定有理數的倒數; 3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。...

  • 有理數的除法

    教學目標 1.理解有理數除法的意義,熟練掌握有理數除法法則,會進行運算; 2.了解倒數概念,會求給定有理數的倒數; 3.通過將除法運算轉化為乘法運算,培養學生的轉化的思想;通過運算,培養學生的運算能力。...

  • 《有理數的除法》教案(精選14篇)

    一、知識與技能掌握有理數除法法則,會進行有理數的除法運算以及分數的化簡。二、過程與方法通過學習有理數除法法則,體會轉化思想,會將乘除混合運算統一為乘法運算。三、情感態度與價值觀培養學生勇于探索積極思考的良好學習習慣。...

  • 《有理數的除法》說課稿(精選4篇)

    教學目標1、理解有理數除法的意義,掌握有理數除法法則一,會進行有理數除法運算。2、通過有理數除法法則的`導出及運算,讓學生體會轉化思想.培養學生新舊知識聯系的思維能力。...

  • 有理數的除法法則教案(精選4篇)

    一、教學目標:1、學會用計算器進行有理數的除法運算.2、掌握有理數的混合運算順序.3、通過探究、練習,養成良好的學習習慣二、教學重點和難點1、學習重點:有理數的混合運算2、學習難點:運算順序的確定與性質符號的處理三、教學過程(一)...

  • 有理數的除法教學反思

    教學反思是指教師對教育教學實踐的再認識、再思考,并以此來總結經驗教訓,進一步提高教育教學水平。下面是由小編為大家帶來的關于有理數的除法教學反思,希望能夠幫到您!有理數的除法教學反思一《有理數的除法》是學生已經掌握有理數乘法...

  • 數學教案-有理數的除法

    “有理數的除法”教學設計一、目的要求1.使學生了解有理數除法的意義,掌握有理數除法法則,會進行有理數的除法運算。2.使學生理解有理數倒數的意義,能熟練地進行有理數乘除混合運算。...

  • 有理數的除法 —— 初中數學第二冊教案

    一、目的要求1.使學生了解有理數除法的意義,掌握有理數除法法則,會進行有理數的除法運算。2.使學生理解有理數倒數的意義,能熟練地進行有理數乘除混合運算。...

  • 初中數學有理數的除法教案(通用2篇)

    一、素質教育目標(一)知識教學點1.了解有理數除法的定義.2.理解倒數的意義.3.掌握有理數除法法則,會進行有理數的除法運算.(二)能力訓練點1.通過有理數除法法則的導出及運算,讓學生體會轉化思想.2.培養學生運用數學思想指導思維活動...

  • 1.2.1有理數(精選13篇)

    一、教學目標:(一)知識與技能1、借助生活中的實例,了解從自然數、分數到有理數的擴展過程,體會有理數應用的廣泛性。2、理解有理數的概念。3、會用正數、負數、零表示生活中具有相反意義的量。4、理解有理數的分類。...

  • 1.2有理數(精選17篇)

    教學目標1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;3, 體驗分類是數學上的常用處理問題的方法。...

  • 1.2.1 有理數(精選17篇)

    教學目標1, 掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;2, 了解分類的標準與分類結果的相關性,初步了解“集合”的含義;3, 體驗分類是數學上的常用處理問題的方法。...

  • 《有理數》教學反思(精選3篇)

    七年級數學的學習成效對整個初中階段數學學習有至關重要的作用。在某種意義上甚至可以說,七年級數學的好壞就決定了學生初中學習生活中數學的將來。...

  • 1.2 有理數(通用13篇)

    1.2 有理數【教學目標】1.掌握有理數的概念;2.會對有理數按一定的標準進行分類;3.體檢分類.【對話探索設計】〖復習〗我們知道,所有的分數都可以寫成兩個整數的比.有限小數5.32可以寫成兩個整數的比嗎?所有的有限小數都是分數嗎? 可以寫成...

  • 1.2.1有理數(精選16篇)

    一. 教學目標知識與技能:學習正數、負數、有理數的概念,會用正、負數表示具有相反意義的量,能正確地將有理數進行分類. 過程與方法:通過觀察節前圖,分析、討論出用正、負數表示具有相反意義的量的方法,了解有理數的產生的必要性、合...

  • 七年級數學教案
主站蜘蛛池模板: 精品久久久噜噜噜久久久 | 欧美人妻少妇精品久久黑人 | 亚洲精品福利网 | 久久综合区 | 男人的天堂视频网站 | 国产免看一级一片免费20岁 | 久久人人爽人人片 | 精东粉嫩av免费一区二区三区 | 综合se站 | 狠狠躁天天躁夜夜躁婷婷老牛影视 | 国产又黄又爽胸又大免费视频 | 成年人在线观看视频 | 成人桃子视频网站在线看 | 天天久久精品视频 | 黑色蕾丝丝袜麻麻好紧好爽 | 大地影视资源在线观看 | 欧美一级高潮片免费的 | 欧美一级久久 | 日韩国产欧美 | 妇女一级片 | 福利社老司机 | 日本特级淫片在线观看 | 波多野结衣av一本一道 | 国产精品人妻无码久久青草 | 欧美A级毛欧美1级A大片免费播放 | 国产精品一二三美女不卡在线观看 | www.色呦呦 | 伊人逼逼 | 成人A级视频在线播放 | 欧美中文字幕 | 国产免费久久精品99久久 | 国产三区四区视频 | 国语自产拍在线观看对白 | 色.com| 日本久久久久久久 | 国产做a爱片 | 四虎影视一区二区精品 | 精品国产乱码久久久久久影片 | 在线欧美 | 97精品| 亚洲中文字幕无码中文字 |