1.2.1 有理數
1.2.1 有理數
教學任務分析
教
學
目
標知識技能理解有理數的含義,能夠把給出的有理數分類、了解0在有理數分類中的作用.數學思考經過本節課的學習,使學生樹立分類討論的觀點和能夠正確地進行分類的能力.解決問題培養學生獨立發現問題、分析問題、解決問題的能力.
情感態度通過聯系與發展、對立與統一的思考方法對學生進行辯證唯物主義教育.
重點會把所給的有理數進行正確的分類
難點掌握兩種有理數的分類方法
教學流程安排
活動流程圖
活動內容和目的一、提出問題 二、初步分析解決問題三、知識應用,拓展創新四、作業創設問題情景,復習所學知識,同時引出新的問題――有理數的分類.解決問題,引導學生進行對有理數進行分類,從而體會分類討論的數學思想.培養學生靈活的思維能力.鞏固新知
教學過程設計一、 創設問題情景復習所學知識,同時引出新的問題――有理數的分類.問題1: 有了負數以后,我們學過的數有哪些?學生活動設計:學生根據所學內容,回憶所學過的數,同時舉出相應的例子,一可以讓學生復習舊的知識,二可以在所提問題中發現新的知識學生舉例:1,2,-1,-3, ,0等 問題2: 在上述列舉的數中,我們可以怎樣進行分類?學生活動設計:學生根據數的特征進行分類,顯然可以把小學學過的數(正數)分成一類――正數,把正數前面加負號(負數)的數分成一類――負數,0既不是正數也不是負數;也可以分成整數和分數,于是有下列分類:正整數,如:1、2、3... 零:0 負整數:-1,-2,-3...正分數: 負分數: 教師活動設計:引導學生理解有理數以及有理數的分類:正整數,零和負整數統稱整數,正分數和負分數統稱分數.整數和分數統稱有理數,這里的分數特指是分母不為1的分數,整數有時可以認為是分母是1的分數.二、 解決問題引導學生進行對有理數進行分類,從而體會分類討論的數學思想.問題3: 如何對有理數進行分類?學生活動設計:根據以上知識學生進行分類. 或 把一些數放在一起,就組成一個數的集合,簡稱數集.所有的有理數組成的數集叫做有理數集,所有整數組成的數集叫做整數集.問題4: 你能解決下列問題嗎?談談你的看法?(1) 0是整數嗎?是正數嗎?是有理數嗎?(2) -5是整數嗎?是負數嗎?是有理數嗎?(3) 自然數是整數嗎?是正數嗎?是有理數嗎?(4) 下列有理數中,哪些是整數?哪些是分數?哪些是正數?哪些是負數?-7、10.1、89、0、-0.67、 、 〔解答〕(1)0是整數、不是正數但是有理數(2)-5是整數、負數、有理數(3)自然數是整數,不是所有的自然數是正數(比如0),所有的自然數都是有理數(4)整數:-7、89、0 分數:10.1、-0.67、 、 正數:10.1、89、