三年級上冊《多位數(shù)乘一位數(shù)》期末考點歸納人教版
一、教學(xué)內(nèi)容
1.口算乘法
a.整十、整百、整千數(shù)乘一位數(shù)
b.乘法的估算
2.筆算乘法
a.不進位的兩位數(shù)乘一位數(shù)
b.一次進位的兩位數(shù)乘一位數(shù)
c.連續(xù)進位的兩位數(shù)乘一位數(shù)
d.連續(xù)進位的三位數(shù)乘一位數(shù)
e.因數(shù)中間或末尾有0的多位數(shù)乘一位數(shù)
二、教學(xué)目標(biāo)
1.比較熟練地口算整十、整百數(shù)乘一位數(shù)。
2.使學(xué)生經(jīng)歷多位數(shù)乘一位數(shù)的計算過程,學(xué)會多位數(shù)乘一位數(shù)的筆算方法。
3.使學(xué)生能結(jié)合具體情境進行估算。
4.使學(xué)生會運用多位數(shù)乘一位數(shù)的計算解決簡單的實際問題。
三、編排特點
1.在具體情境中教學(xué)計算知識。
游樂園買票問題。
計算共有多少枝彩筆。
計算一共買了多少本書。
開運動會時計算一共有多少瓶礦泉水。
計算運動場共能坐多少人。
七仙女摘桃的神話故事。
老壽星散步。
2.重視知識間的前后聯(lián)系,口算、估算、筆算相互配合,讓學(xué)生根據(jù)計算的實際需要選擇合適的算法。
學(xué)生已經(jīng)學(xué)過表內(nèi)乘法,在這兒,以表內(nèi)乘法為基礎(chǔ),過渡到整十?dāng)?shù)乘一位數(shù)的口算,而這些口算又是估算和筆算的基礎(chǔ)(如12×3就要用到10×3和2×3的口算),在估算和筆算的過程中又同時鞏固了口算。
3.不再出現(xiàn)算理敘述和直觀操作,而是讓學(xué)生在已有知識的基礎(chǔ)上自主探索,用遷移類推的方法掌握新知識。
如整十?dāng)?shù)乘一位數(shù)的口算乘法,不再出現(xiàn)“2個十乘3就是6個十,也就是60”這樣的算理敘述,而是以學(xué)生討論交流各自算法的方式呈現(xiàn)。
再如兩位數(shù)乘一位數(shù)的進位計算,不再借助直觀圖來幫助學(xué)生理解算理。(以前教學(xué)不進位的乘法時借助小方塊,教學(xué)進位時用小棒來幫助學(xué)生理解。)
四、具體編排
(一)口算乘法
1.主題圖
呈現(xiàn)了一個游樂園的情境圖,類似于二年級上冊乘法初步認(rèn)識的情境圖。圖中可以提出許多用乘法計算的問題。如可以計算坐小火車的一共有多少人,坐過山車的有多少人,坐摩天輪的有多少人。圖中有一個各種游樂項目的價格表,可以計算若干人玩某個項目需花的錢數(shù)。提的問題可以很開放(學(xué)生可以自己設(shè)定條件,如有15人想玩過山車)。
2.例1(整十?dāng)?shù)乘一位數(shù)的口算乘法)
(1)從主題圖中抽取出情境,讓學(xué)生在實際背景中理解乘法計算的意義。
(2)以表內(nèi)乘法9×2作為過渡。
(3)計算2×10時體現(xiàn)算法多樣化。
a.10個2直接相加。
b.9個2用表內(nèi)乘法計算,再加一個2。
c.把2×10看成2個10相加。
(4)計算20×3時,只給出答案,沒有給出思考過程。教學(xué)時,可以讓學(xué)生說說自己是怎樣計算的(自己歸納出2個十乘3就是6個十,也就是60的結(jié)論),引導(dǎo)學(xué)生將整十?dāng)?shù)乘一位數(shù)轉(zhuǎn)化為表內(nèi)乘法。
3.p69“做一做”
把整十、整百、整千數(shù)乘一位數(shù)對照排列,重點是引導(dǎo)學(xué)生發(fā)現(xiàn)口算乘法的規(guī)律。
4.例2
(1)在實際情境中,使學(xué)生理解估算的意義。
(2)利用已學(xué)的乘法口算進行估算。
(3)第一次出現(xiàn)約等號。
(4)一方面要掌握估算的方法,另一方面是用估算的結(jié)果進行判斷。如果有32個同學(xué)參觀,估算的結(jié)果是同樣的,但判斷卻是不同的,所以在估算時還要分析實際的情況后再解決問題。
5.練習(xí)十五
第11題,是口算乘法的逆思考,如果學(xué)生已經(jīng)掌握了整十?dāng)?shù)乘一位數(shù)的規(guī)律,只要思考哪兩個數(shù)相乘得24即可。