五年級數學下冊《因數與倍數》教案(通用17篇)
五年級數學下冊《因數與倍數》教案 篇1
教學目標:
1、從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2、培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3、培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
教學重點:
理解因數和倍數的含義。
教學過程:
一、創設情境,引入新課
師:人與人之間存在著許多種關系,你們和爸爸(媽媽)的關系是……?
生:父子(父母、母子、母女)關系。
師:我和你們的關系是……?
生:師生關系。
師:對,我是你們的老師,你們是我的學生,我們的關系是師生關系。在數學中,數與數之間也存在著多種關系,這一節課,我們一起探討兩數之間的因數與倍數關系。(板書課題:因數與倍數)
二、認識因數與倍數
師:我們已經認識了哪幾類數?
生:自然數,小數,分數。
師:現在我們來研究自然數中數與數之間的關系。請你們用12個小正方形擺成不同的長方形,并根據擺成的不同情況寫出乘、除算式。
根據學生的匯報板書:
1×12=12 2×6=12 3×4=12
12×1=12 6×2=12 4×3=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點?
生:第①組每個式子都有1、12這兩個數。
生:第②組每個式子都有2、6、12這三個數。
生:第③組每個式子都有3、4、12這三個數。
師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?請看課本P12、
師:2和6與12的關系還可以怎樣說呢?
生:2和6是12的因數,12是2的倍數,也是6的倍數。
師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?
生:3、4和12有因數和倍數關系,3和4是12的因數,12是3和4的倍數。
生:我認為1和12也有因數和倍數關系。1是12的因數,12是1的倍數。
生:可以說12是12的因數嗎?
生:我認為可以,12×1=12,1和12都是12的因數。
師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。
師出示:11÷2=5……1、問:11是2的倍數嗎?為什么?
生:我認為不是,因為11除以2有余數。
師:你能舉一個算式,并說說誰是誰的倍數,誰是誰的因數嗎?
生:2×4=8,2和4是8的因數,8是2和4的倍數。
生:40÷2=20,40是2和20的倍數,2和20是40的因數。
師出示:0×3 0×10
0÷3 0÷10
通過剛才的計算,你有什么發現?
生:我發現0和任何數相乘,都等于0。
生:0除以任何數都等于0。
生:我補充,0不能作為除數。
師:所以在研究因數和倍數時,我們所說的數一般指整數,不包括0。
師生小結:這節課,你們都學會了哪些知識?還有什么不明白的地方?
生:我有一個疑問,在2×6=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關系,這兩種說法一樣嗎?
師:這個問題提得好!誰能回答他的問題?
生:我覺得好像不一樣,但不知道為什么?
生:我認為不一樣,在2×6=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關系。
師:說的真好。這節課我們研究因數與倍數的關系中所說的因數不是以前乘法算式中各部分名稱中的“因數”,兩者可不能搞混哦!
三、課堂練習
1、下面每一組數中,誰是誰的倍數,誰是誰的因數。
16和2 4和24 72和8 20和5
2、下面的說法對嗎?說出理由。
(1)48是6的倍數。
(2)在13÷4=3……1中,13是4的倍數。
(3)因為3×6=18,所以18是倍數,3和6是因數。
師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。
生:因為沒有說明18是誰的倍數,所以不對。
師:你認為怎樣說才正確呢?
生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。
師:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。
3、在36、4、9、12、3、0這些數中,誰和誰有因數和倍數關系。
4、游戲。請生任意寫一個60以內的自然數(0除外),聽老師說要求,所寫的數符合要求的請舉手,同桌互相檢查。
①是4的倍數
是60的因數
是5的倍數
是36的因數
②請一名學生模仿剛才老師的要求,繼續練習。
③想一想,應該提什么要求,讓全班同學都能舉手?
生:是1的倍數。
師:嘩,全班都舉手了,誰能總結剛才的說法。
生:任何不包括0的自然數都是1的倍數。
五年級數學下冊《因數與倍數》教案 篇2
一、談話導入,激發興趣
1、回顧學過的數
2、明確學習主題
二、自主學習,探究新知
1、自主學習
自學指導:閱讀課本P12和P13例1
(1)2脳6=12,表示的意義是什么?在這個乘法算式中,誰是誰的因數,誰是誰的倍數?
(2)想一想:什么情況下,兩個不是零的自然數之間是因數(倍數)的關系?
(3)怎樣找出18的全部因數?你是怎樣想的?
怎樣表示出18的因數?
要求:1、獨立學習
2、時間6分鐘
3、全班交流
問題一:初建模型
在圖式結合中構建因數、倍數的概念,并從中感受因數和倍數是相互依存的,有著互逆關系的一組概念。
問題二:深化模型
明確因數與倍數的外延,進一步認識、內化因數、倍數的內涵,從中提煉出因數、倍數模型的本質意義。
ab=c(a、b、c為非零自然數)
問題三:應用模型
①交流找一個數的因數的方法及表示方法。
②找30、36的因數。
3、議一議
(1)今天學習的因數與乘法算式中的因數一樣嗎?倍數與倍一樣嗎?
(2)通過找一個數的因數,你有什么發現?
三、檢測反饋,拓展運用
四、板書設計
因數和倍數
2脳6=12
2和6是12的因數。
12是2和6的倍數。
3脳4=12
ab=c(a、b、c為非零自然數)
a和b是c的因數,c是a和b的倍數。
五年級數學下冊《因數與倍數》教案 篇3
教學內容:
蘇教版義務教育教科書《數學》五年級下冊第30~32頁例1、例2和試一試、例3和試一試練一練,第35頁練習五第1~4題。
教學目標:
1、使學生認識倍數和因數,能判斷兩個自然數間的因數和倍數關系;學會找一個數的因數和倍數的方法,能按順序找出100以內自然數的所有因數,10以內自然數的所有倍數;了解一個數的因數、倍數的特點。
2、使學生經歷探索求一個數的因數或倍數的方法、一個數的因數和倍數特點的過程,體會數學知識、方法的內在聯系,能有條理地展開思考,培養觀察、比較,以及分析、推理和抽象、概括等思維能力,發展數感。
3、使學生主動參與操作、思考、探索等活動,獲得解決問題的成功感受,樹立學好數學的信心,養成樂于思考、勇于探究等良好品質。
教學重點:
認識因數和倍數。
教學難點:
求一個數的因數、倍數的方法。
教學準備:
小黑板、準備12個同樣大的正方形學具。
教學過程:
一、操作引入,認識意義
1、操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。 學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2、認識意義。
(1)說明:我們先看43=12。根據43-12,我們就可以說:4和3都是12的因數;反過來,12是4的倍數,也是3的倍數。
(2)啟發:現在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。
(3) 小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是O的自然數。
五年級數學下冊《因數與倍數》教案 篇4
教材分析
一、教學內容
本單元包含的內容有:1、因數和倍數2、 2、5、3的倍數的特征3、質數和合數
二、教學目標
(1)使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。
(2)探索并掌握2、5、3的倍數的特征。
(3)逐步培養學生的數學抽象能力。
三、教學重點:掌握概念之間的聯系和區別。
四、教學難點:掌握倍數的特征。
五、新舊教材的對比
1.精簡概念,減輕學生記憶負擔。
(1)不再出現“整除”“約數”概念,直接從乘法算式引出因數和倍數的概念。
(2)不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。
(3)公因數、最大公因數、公倍數、最小公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其應用性。
2.注意體現數學的抽象性。
數論知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。
六、教材建議與暢想
本單元建議6課時左右
因數和倍數
因數和倍數,傳統教材是按數學知識的邏輯系統(除法整除約數和倍數)來安排的,這種概念的揭示,從抽象到抽象,沒有學生親身經歷的過程,也無須學生借助原有經驗的自主建構,學生獲得的概念是刻板、冰冷的。現在的具體做法:
(1)用12個同樣的小正方形擺一個長方形,可以怎樣擺?能不能舉一道簡單的乘法算式,把你心目中的擺法表示出來
(2)通過剛才的學習,我們發現,用12個同樣的小正方形,可以擺出三種不同的長方形,由此我們還得出三道不一樣的乘法算式。以43=12為例,43=12,從數學的角度看,我們可以說4是12的因數,3也是12的因數。反過來,我們還可以說,12是4的倍數,12也是3的倍數。根據“44=16、400÷16=25”這兩個算式,你能分別說一說誰是誰的因數,誰是誰的倍數嗎?(此題的設計幫助學生明確了3個概念:①當兩個因數相同時,通常只需要說出或寫出一個。②能夠根據算式靈活的說出因數與倍數的關系。③因數和倍數它們是一種相互依存的關系)
2、“因數和倍數”的概念學生非常容易與乘法算式中的因數及除法算式中的倍發生混淆,因此在教學中要充分估計學生出錯的現象,用大量的判斷題幫助學生形成正確的概念。
(1)乘法算式各部分名稱中的“因數”和本單元中的“因數”的聯系和區別。(2)“倍數”與前面學過的“倍”的聯系與區別。(3)說明本單元的研究范圍,根據因數和倍數的定義,0是任何非零自然數的倍數,任何非零自然數都是0的因數。但是考慮到以后研究最大公因數和最小公倍數時,如果不排除0,很多問題無從討論,如討論0和5的最大公因數既沒有實際意義,也沒有數學意義,再如,如果把0考慮在內,任意兩個自然數的最小公倍數就是0,這樣的研究沒有任何價值。因此,教材指出本單元研究的內容一般不包括0。
以上3點教師要做到心中有數,不需要告知學生,用習題進行辨析,只需要告訴學生為了研究的方便,在研究因數和倍數時,我們所說的數專指不是零的自然數。
2、3、5的倍數的特征
1、在教學2、5的倍數的特征時讓學生經歷觀察――猜想――驗證的過程,由于2、5的倍數的特征在個位數上就體現出來了,很容易發現,所以可以放手讓學生歸納,教師重點指導學深觀察既是2的倍數又是5的倍數的特征。
2、在運用2的倍數的特征進行自然數分類介紹偶數和奇數的概念時。我們在這個單元中一般不考慮0,在這兒需要作一個特殊說明,因為0也是2的倍數,因此0也是偶數。
3、在教學3的倍數的特征時讓學生經歷觀察――猜想――推翻猜想――再觀察――再猜想――驗證的過程。
質數和合數
1、在質數和合數的含義教學中。注意加強因數和質數、合數的概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背,從因數和倍數的含義去理解其他的相關概念。
2、從一張100以內的數列表中,尋找質數的過程,這一環節要用去了課堂中較多的時間。必須使每一個孩子都體驗尋找質數的過程。有的會一個個去尋找質數;有的在尋找了幾個后發現了規律,用排除合數的方法迅速尋找,當然也有一些孩子一開始也有無從下手。當學生探索完后,教師要向他們介紹了古代數學家的“篩法”,可以先篩出除2以外的2的倍數,再篩出除3以外的3的倍數,想一想一只要篩到幾?是的學生深刻理解100以內的質數表。
3、教材把分解質因數安排在“你知道嗎?”中進行介紹,供學生閱讀參考。但教師在教學是還是要作為知識點講授,因為是今后學習其它知識的一種重要方法技能。按照圖表的形式把合數分解成質數相乘的形式轉化為短除法,重點講短除法的方法。然后介紹分解質因數的作用,例如:找一個較大數的因數,使學生明確分解質因數的作用。并告知學生這一方法將在以后的學習中廣泛運用,為學生留有懸念。
五年級數學下冊《因數與倍數》教案 篇5
教學內容
本單元包括三部分內容:1.因數與倍數的概念;2.被2、5、3整除的數的特征;質數和合數。
教學目標
1. 使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。
2. 使學生通過自主探索,掌握2、5、3的倍數的特征。
3. 逐步培養學生的數學抽象能力。
教學重點
理解因數、倍數、質數、合數等概念的含義。
教學難點
從本質上理解這些概念之間的聯系和區別;掌握3的倍數的特征.
學情分析
通過四年多的數學學習,學生已經掌握了大量的整數知識(包括整數的認識、整數四則運算),本單元讓學生在前面所學的整數知識基礎上,進一步探索整數的性質。學生在前面已經具備了大量的區分整除與有余數除法的知識基礎,對整除的含義已經有了比較清楚的認識,不出現整除的定義并不會對學生理解其他概念產生任何影響。因此,本套教材中刪去了“整除”的數學化定義,而是借助整除的模式na=b直接引出因數和倍數的概念。在本冊教材中,由于允許學生采用多樣的方法求最大公因數和最小公倍數,分解質因數也失去了其不可或缺的作用,同時,也是為了減少這一單元的理論概念,教材不再把它作為正式教學內容,而是作為一個補充知識,安排在“你知道嗎?”中進行介紹。由于這部分內容較為抽象,很難結合生活實例或具體情境來進行教學,學生理解起來有一定的難度。在過去的教學中,一些教師往往忽視概念的本質,而是讓學生死記硬背相關概念或結論,學生無法理清各概念間的前后承接關系,達不到融會貫通的程度。再加上有些教師在考核時使用一些偏題、難題,導致學生在學習這部分知識時覺得枯燥乏味,體會不到初等數論的抽象性、嚴密性和邏輯性,感受不到數學的魅力。所以在教學中應注意以下兩點: (1)加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。(2)由于本單元知識特有的抽象性,教學時要注意培養學生的抽象思維能力。
課時安排
6課時
第一課時 因數和倍數
教學內容
因數與倍數,p12-13例1及p15頁1、2題。
教學目標
1.從操作活動中理解因數與倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2.培養學生抽象、概括與觀察思考的能力,滲透事物之間相互聯系,相互依存的辨證唯物主義觀點。
3.培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
教學重點:理解因數和倍數的意義
教學難點:因數和倍數等概念間的聯系和區別。
教學過程:
一、認識因數與倍數
1、觀察主題圖,根據主題圖的不同情況寫出乘法算式和除法算式。
112=12 26=12 34=12
121=12 62=12 43=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
2、觀察并回答。
(1)這三組乘法、除法算式中,都有什么共同點?
(2)像這樣的乘除法算式中的三個數之間還有另一種說法,你想知道嗎?看書第12頁。
(3)這樣的三個數,我們也可以怎樣說?(2和6是12的因數),請大家也像這樣把其余的兩組數也說一說。
請看教材12頁,2和6與12的關系還可以怎么說?
(4)也就是說2和6與12的關系是因數和倍數的關系,這幾組數中,誰和誰還有因數和倍數的關系?
(5)提問:能不能說12是12的因數呢?
(6)小結:上面這三組算式中,我們知道:1、2、3、4、6、12都是12的因數。
3.討論:23÷4=5……3,提問:23是4的倍數嗎?為什么?
誰能舉一個算式例子,并說說誰是誰的倍數,誰是誰的因數?
4.討論:03 010 0÷3 0÷10
提問:通過剛才的計算,你有什么發現?
注意:(1)為了方便,在研究因數和倍數的時候,我們所說的數一般指的是整數,但不包括0。(2)這節課我們研究因數與倍數的關系中所說的因數不是以前乘法算式名稱的“因數”,兩者不能搞混淆。
二、鞏固新知
1.下面每一組數中,誰是誰得因數,誰是誰得倍數?
16和2 4和24 72和8 20和5
2.下面得說法對嗎?說出理由。
(1)48是6的倍數
(2)在13÷4==3……1中,13是4的倍數
(3)因為36=18,所以18是倍數,3和6是因數。
3.在36、4、9、12、3、0這些數中,誰和誰有因數和倍數關系。
4.游戲。記住自己的學號,聽老師說要求,符合要求的同學請舉手。
(1)( )是4的倍數
(2)( )是60的因數
(3)( )是5的倍數
(4)( )是36的因數
本節課應當讓學生明確以下幾個問題:(1)因數、倍數必須在整數的范圍內研究。
第二課時:一個數的因數的求法
教學內容 一個數的因數的求法(p13頁例題1及p15練習題2)
教學要求
1.通過學習,使學生掌握用不同的方法求一個數的因數的方法。
2.通過求一個數的因數方法,知道一個數的因數的個數是有限的。
3.通過不完全歸納法得出一個數的因數的特點,體現從具體到一般的解題思路。
教學重點:學會求一個數的因數
教學難點:弄清為什么一個數的因數的個數是有限的。
教學過程:
一、復習舊知:
1.根據算式:48=32說說誰是誰的因數?誰是誰的倍數?
2.根據算式:63÷7=9說說誰是誰的因數?誰是誰的倍數?
3.判斷:1.2÷0.2=6,我們能說0.2和6是1.2的因數嗎?1.2是0.2的倍數,也是6的倍數嗎?
4.注意:本單元講的因數和前面講的乘法方式各部分名稱的因數有所不同,這里講的的倍數,也和前面講的“倍”有所不同。
二、探究新知
1.出示p13例題1:18的因數有哪幾個?
(1)提問:怎樣去求18的因數呢?同位同學互相討論,要求不能遺漏,看誰找得又對又快?
(2)匯報:第一種方法,列出積是18的乘法算式,得到18得因數有:1、2、3、6、9、18。第二中方法,列出被除數是18的除法算式,得到18的因數有:1、2、3、6、9、18。
(3)無論是乘法算式還是除法算式,在思考時要注意什么?(要從最小的數找起,都時非0的整數)
我們把18的因數也可以像這樣表示。如圖:
18的因數
1、2、3、
6、9、18
這個圈我們稱它為集合圈,這種表示方法就是用集合圈表示因數。
2.完成p13做一做
(1)同學們找出30的因數,找出36的因數
獨立完成后,匯報自己找因數的方法。
30的因數有:1、2、3、5、6、10、15、30
36的因數有:1、2、3、4、6、9、12、18、36
(2)觀察,18的最小因數是( ),最大因數是
30的最小因數是( ),最大因數是( )
36的最小因數是( ),最大因數是( )
提問:通過觀察,你發現了什么?大家再數一數這三個數的因數的個數,你又發現了什么?
(3)一個數的因數有什么特點?
特點:最大的因數是它本身,最小的因數是1;一個數的因數的個數是有限的
三、鞏固新知
1.完成p15第2題
學生自己獨立完成,講評時讓學生說一說,是怎么想的?
2.判斷
(1)12的因數有:1、2、3、4、6、12。
(2)整數32的因數共有4個。
(3)自然數a的最大因數是a,最小因數是1。
(4)一個數的因數都小于這個數。
五年級數學下冊《因數與倍數》教案 篇6
教學目標:
1、學生通過回憶和整理,進一步明確因數和倍數的相關知識,加深認識相關概念之間的聯系與區別,能求兩個數的公因數和公倍數,并能運用這些知識解決相關實際問題。
2、學生在應用相關知識進行判斷和推理的過程中,能說明思考過程,進一步培養歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
3、學生進一步體會數學知識之間的內在聯系,感受數學思考的嚴謹性和數學結論的確定性,激發學習數學的興趣和學好數學的自信心。
教學重點:
掌握倍數和因數等相關概念,以及應用概念判斷、推理。
教學難點:
理解相關概念的聯系和區別。
教學過程:
一、揭示課題
1、回顧知識。
提問:上節課,我們已經復習了整數和小數的有關知識。
在整數知識里,我們還學習了因數和倍數,誰能來說說你是怎樣理解因數和倍數的?一個數的因數和倍數各有什么特點?
結合學生交流,板書。
2、揭示課題。
引入:這節課,我們復習因數和倍數的相關知識。
通過復習,能進一步了解關于因數和倍數的知識,理解它們之間的聯系和區別,并能應用這些知識。
二、基本練習
1、知識梳理。
提高:回想一下,在學習因數和倍數時,我們還學習了哪些相關的知識?
學生回顧,交流,教師適當引導回顧。
提問:2、5、3的倍數各有什么特征?什么叫奇數,什么叫偶像?什么叫質數,什么叫合數?什么叫公因數和最大公因數?什么叫公倍數和最小公倍數?
根據學生回答,板書整理。
2、做練習與實踐第10題。
學生獨立完成,指名板演。
集體交流,讓學生說說找一個數的因數和倍數的方法。
3、做練習與實踐第11題。
出示題目,學生直接口答。
提問:怎樣判斷一個數是不是2的倍數?判斷是3和5的倍數呢?
追問:這里哪些是偶數,哪些是奇數?說說你是怎樣想的。
4、做練習與實踐第12題。
學生先獨立寫出質數和合數,再指名口答。
追問:最小質數是幾?最小的合數呢?
五年級數學下冊《因數與倍數》教案 篇7
教學內容:
教材第17頁、18頁內容。
教學目標:
知識目標:
1、使學生初步掌握2、5的倍數的特征。
2、使學生知道奇數、偶數的概念。
能力目標:
1、會判斷一個數是否能被2、5整除。
2、會判斷奇數、偶數。
3、培養類推能力及主動獲取知識的能力。
情感目標:
激發學生的學習興趣。
教學重點:
掌握2、5的倍數的特征及奇數、偶數的概念。
教學難點:
靈活運用2、5的倍數的特征及奇數、偶數的概念進行綜合判斷。
教學過程:
一、激趣引入走進課堂
1、前面我們學習了自然數、整數、因數,后來又學習了倍數,我們都說自己學的很棒,今天我就考考大家
出示:1~100的自然數。
2、導入:
這是1~100的自然數。
你能很快找出2的所有倍數嗎,并用藍筆圈出來。試一試!
3、同桌結組,比試結果。
二、探究新知
1、2的倍數的特征。
你們圈出的這些數和2有什么聯系
為什么它們都是2的倍數
這些數是分別用2X12X22X32X42X5……得來的
請大家觀察這些數,你發現這些數有什么特征?
這些數個位上是0、2、4、6、8中的一個。
這個規律正確嗎?請同學們任寫一些大一點的數驗證一下。(學生寫數驗證,小組內討論)
學生匯報,師生共同總結:看來判斷一個數是不是2的倍數,只要看這個數的個數是不是0、2、4、6、8就可以了。
三、練習出示課本第20頁第一題
自學奇數、偶數
1、關于一個數是不是2的倍數,還有很多知識,你想知道嗎?請你打開課本第17頁自學。
你們從書上還知道了些什么?
自然數中,是2的倍數的數叫做偶數,不是2的倍數的數叫做奇數。
0也是偶數。(因為0也是2的倍數,所以也是偶數)
雙數指的就是偶數,那么單數指什么呢?
學生說:奇數
2、鞏固練習出示課本第17頁做一做
學生口答
根據上面的學習,你們還能想到哪些數學知識呢?
自然數根據是不是2的倍數,可分為奇數和偶數。
因為0、2、4、6、8都是偶數,所以也可以說“個位上是偶數的數都是偶數”。
3、聯系生活
在生活中,你在哪兒還見過奇數和偶數?
我的身高148厘米,148就是一個偶數
20__是個偶數
同學們真有心,在我們的生活中經常用奇數、偶數對事物進行分類。
看來奇數、偶數給我們的學習、生活帶來不少方便呢。
2、5的倍數的特征。
自主探索5的倍數的特征。
在課本上有100以內數的表格,請同學們打開書,找出5的倍數,看看有什么規律,和你的同桌說一說,并想辦法驗證你所發現的`規律。
師生共同總結:個位上是0或5的數,是5的倍數。
3、既是2的倍數,又是5的倍數的數的特征
判斷:下面哪些數是2的倍數?哪些數是5的倍數?哪些數既是2又是5的倍數?(6030)
60、75、106,30,521
①引導學生思考:一個數既是2的倍數又是5的倍數,這個數有什么特征?
②匯報結果:說說你是怎樣判斷的?
③引導總結:個位上為0的數既是2的倍數又是5的倍數。
三、鞏固發展:
(1)套圈游戲:把下面的數填在圈里。
①2的倍數:
②5的倍數:
③同時是2和5的倍數:
(2)判斷。
①一個自然數不是奇數就是偶數。
②能被2除盡的數都是偶數。
③同時是2和5倍數的數,個位上的數字一定是0。
四、全課小結:
這節課你學到了哪些知識?
五年級數學下冊《因數與倍數》教案 篇8
尊敬的各位評委老師:
大家上午好!我是面試小學數學教師的8號考生,今天我說課題目是《倍數與因數》,下面我將從說教材、學情、教法學法、教學過程、板書設計這幾個方面進行,下面開始我的說課。
一、首先,說教材
《倍數與因數》是北師大版小學數學五年級上冊第3章第1課的內容,主要是講述倍數與因數的含義以及相互依存的關系。該教學內容是在學生熟練掌握乘除法計算的基礎上進行教學的。這將為今后進一步學習2、3、5倍數的特征以及質數合數的問題奠定了基礎,因此具有承上啟下的作用。
通過對教材的分析,根據新課標的要求,我確立了如下的三維目標:
1、知識與技能目標:學生會判斷誰是誰的因數、誰是誰的倍數,了解倍數與因數是相互依存的關系。
2、過程與方法目標:學生經歷動手操作、合作探究等學習過程,培養合作能力以及創新意識。
3、情感態度及價值觀目標:在探究倍數與因數關系過程中,感受相互依存的關系,培養學生樂于探索與交流的情感品質。
通過對教材和教學目標的分析,本課的教學重點我認為是理解并掌握理解和掌握倍數與因數的含義。教學難點是理解倍數和因數是相互依存的關系、會找7的倍數。
二、說學情
奧蘇伯爾認為:“影響學習的最重要因素,就是學習者已經知道了什么,要探明這一點,并據此進行教學。”因此,在教學之始,關注學生的基本情況很重要。五年級的學生他們的思維已經開始由具體形象思維過渡到抽象思維,但推理能力還有待提高,因此我會緊扣學生已有的知識經驗,創設有助于學生自主學習,合作交流的情境。
三、說教法學法
基于對教學內容、學情的分析和新課改的要求,本課我主要采取以講授法為主,輔助以啟發式教學法,討論交流法,練習法等來展開教學,從而達到培養能力,養成良好習慣的目的。科學的學習方法十分重要,它是打開知識寶庫的“金鑰匙”,是通向成功的“橋梁”。本節課我對學生采用自主探索,小組討論的方式,培養他們合作交流,自主歸納數學規律的能力。
四、說教學過程
教學過程是本次說課的核心環節,所以我將著重介紹一下教學過程。
環節一、談話導入,激發求知欲
在上課之初,我會播放國慶xx周年閱兵的視頻,讓學生們一起再次為祖國媽媽慶生,感受祖國的強大,同時祝福祖國媽媽繁榮昌盛。接著屏幕放大閱兵的兩個方陣,請學生們算一算各有多少人?學生不難給出算式為94=36(人),57=35(人),順勢詢問算式中數字之間的關系,進而引出新課。
通過視頻導入,一方面增加學生們參與課堂的積極性,另一方面激發學生強烈的求知欲,更好的完成本課的教學。
環節二、誘導啟發,發現新知
在這一環節中,我設計了以下2個學習活動
活動一:辨析倍數與因數的關系
首先,通過導入的問題,讓學生們觀察算式94=36,講解這里的36是9和4的倍數,9和4是36的因數。然后讓學生們根據57=35,思考“哪個數是哪個數的倍數,哪個數是哪個數的因數”。學生們會有35是倍數,5和7是因數的錯誤回答。部分學生會質疑這樣的表述到底35是誰的倍數,5和7是誰的因數。進而師生共同探究發現正確表述:35是5和7的倍數,5和7是35的因數。順勢強調不能單獨說誰是倍數,誰是因數,同時指明我們只在自然數(0除外)范圍內研究倍數和因數。在整個過程中肯定學生們的發現,并給與正面的評價。
其次引導學生根據大屏幕中的算式253=75,205=100,再來說一說哪個數是哪個數的倍數,哪個數是哪個數的因數。學生們會準確的回答出75是25和3的倍數,25和3是75的因數。100是20和5的倍數,20和5是100的因數。師生共同總結我們在表述倍數與因數關系時一定要注意,由于因數與倍數是相互依存的,所以應該說誰是誰的倍數,誰是誰的因數。對于學生們積極參與課堂,認真思考問題,向學生們投入更多的贊美語言。
活動二:找尋7的倍數
首先,在學生們可以根據給出算式順利表示出倍數與因數關系后,讓學生們思考“屏幕上哪些數是7的倍數”,獨立思考后四人為一小組進行討論。小組匯報的結果會有:7=71,14=72,77=711,所以7、14、77是7的倍數,表明這是利用本節課的倍數與因數關系去解決問題。還有14÷7=2,14是7的2倍,17÷7=2......3,17不是7的倍數等答案。指出這是利用除法去解決的,可以整除的都是7的倍數。順勢帶領學生總結其實在倍數與因數的關系中,如果商是整數且沒余數的情況下,我們也可以說被除數是除數和商的倍數,除數和商是被除數的因數。
在這些活動中,把學生置于學習的主體地位,鼓勵,引導學生培養他們的獨立學習的能力,合作探究的精神和創新意識。
環節三、實踐練習,鞏固新知
我設計了課后試一試的練習鞏固所學知識,旨在培養學生進一步明確倍數與因數的含義,進而進一步理解和掌握倍數與因數相互依存的關系。
環節四、引發反思,全課小節
通過讓學生回顧新知,談收獲,給學生再次交流的機會,讓學生互相提醒,進一步突出本節課的知識要點。師生共同完成課堂評價。
環節五:布置作業,課后提高
根據學生的個體差異性,為更好的體現因材施教的原則作業我將分為必做題和選做題,必做題是課后練習;選做題是找找生活中的運用。
五、說板書設設計
黑板上呈現的就是我的板書設計,我的設計以提綱式的板書為主,這樣可以很直觀、很清晰、更明了的整課內容展示出來,一目了然,便于學生對所學知識的理解和掌握。
以上就是我說課的全部內容,感謝各位評委老師的耐心傾聽,現在,我可以擦掉我的板書了嗎?
五年級數學下冊《因數與倍數》教案 篇9
一、談話導入,激發興趣
1、回顧學過的數
2、明確學習主題
二、自主學習,探究新知
1、自主學習
自學指導:閱讀課本P12和P13例1
(1)2脳6=12,表示的意義是什么?在這個乘法算式中,誰是誰的因數,誰是誰的倍數?
(2)想一想:什么情況下,兩個不是零的自然數之間是因數(倍數)的關系?
(3)怎樣找出18的全部因數?你是怎樣想的?
怎樣表示出18的因數?
要求:1、獨立學習
2、時間6分鐘
3、全班交流
問題一:初建模型
在圖式結合中構建因數、倍數的概念,并從中感受因數和倍數是相互依存的,有著互逆關系的一組概念。
問題二:深化模型
明確因數與倍數的外延,進一步認識、內化因數、倍數的內涵,從中提煉出因數、倍數模型的本質意義。
ab=c(a、b、c為非零自然數)
問題三:應用模型
①交流找一個數的因數的方法及表示方法。
②找30、36的因數。
3、議一議
(1)今天學習的因數與乘法算式中的因數一樣嗎?倍數與倍一樣嗎?
(2)通過找一個數的因數,你有什么發現?
三、檢測反饋,拓展運用
四、板書設計
因數和倍數
2脳6=12
2和6是12的因數。
12是2和6的倍數。
3脳4=12
ab=c(a、b、c為非零自然數)
a和b是c的因數,c是a和b的倍數。
《人教版:五年級下冊《因數與倍數》教學設計》
五年級數學下冊《因數與倍數》教案 篇10
一、說教材
在學習本單元之前,學生已經分階段認識了百以內、千以內、萬以內、億以內以及一些整億的數。較為系統地掌握了十進制計數法,同時也基本完成了整數四則運算的學習。但這只是對數字的淺在認識,為學生進一步學習公倍數和公因數,以及分數的約分、通分和四則運算奠定基礎。
教學目標定為以下幾點:
(一)知識、技能目標:
1、使學生結合整數乘、除法運算初步認識倍數和因數的含義,探索并掌握找一個數的倍數和因數的方法,發現一個數的倍數、因數中最大的數、最小的數及其個數方面的特征。能在1到100的自然數中找出10以內某個數的所有倍數,能找出100以內某個數的所有因數。
2、使學生在認識倍數和因數以及探索一個數的倍數或者因數的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
(二)情感、價值目標:
讓學生初步意識到可以從一個新的角度來研究非零自然數的特征及其相互關系,培養學生的觀察、分析和抽象概括能力,體會教學內容的奇妙、有趣,產生對數學的好奇心。
本課的教學重點是理解倍數和因數的含義與方法。
教學難點是掌握找一個數的倍數和因數的方法。
二、學生學習情況分析
本班多數學生在平時的學習中缺少主動性,目的性。一部分學生怕困難,缺乏獨立思考的習慣,同時,考慮問題也不夠全面。在本堂課的教學中,主要調動學生的學習積極性提高學生課堂活動的參與性,體驗成功的樂趣,通過學生的親自探索和體驗來達到學習知識,掌握所學知識的目的。同時,感受數學中的奧妙,增加學習數學的興趣。
三、教法與學法指導
當今社會、人類的發展離不開素質教育,而實施素質教育必須“以學生為本”,課堂教學要圍繞培養學生的探索精神、創新精神出發,為全面提高學生的綜合素質打下一定的基礎。本節課根據學生的認知能力與心理特征來進行教學策略和方法的設計。
1、本節課理論性的知識比較多,課前讓學生結合學案進行自學教師適當點撥。
2、 遵循學生主體、教師主導(組織),學生操作、探究為主線的理念,首先從學生的操作入手,由淺入深,利用學生對乘法運算的已有認識,在操作中引出倍數和因數的概念。
3、小組合作討論法。以學生討論、交流、相互評價,促成學生對找一個數的倍數、一個數的因數的方法進行優化處理,提升、鞏固學生方法表達的完整性、有效性,避免學生只掌握了方法的理解,而不能全面的正確的表達。
4、在教學過程的設計上,根據學生的興趣,認知規律,自己采取用教材,而不搬教材的教學設計。
四、教學過程:
(一)激發興趣,引入新課:讓學生針對12個正方形的擺法討論,激發學生興趣,引入數學中自然數和自然數之間也有各種關系,初步體會數和數的對應關系,既拉近了數學和生活的聯系,又培養了學生的興趣。
(二)情境體驗,理解概念:分三個層次進行教學。(1)情境體驗,初步感知倍數和因數的意義。讓學生根據12個正方形的不同擺放方式寫出算式,讓學生充分經歷了“由形到數、再由數到形”的過程,既為倍數和因數概念的提出積累了素材,又初步感知倍數和因數的關系,為正確理解概念提供了幫助。(2)在具體的乘法算式中,理解倍數和因意義。這樣做不僅降低了難度,而且為學生的后續學習拓展了空間。根據算式介紹倍數和因數的意義,然后讓學生根據其余兩道乘法算式模仿的說一說,充分的讀一讀,在通過“能說4是因數,36是倍數嗎?這一反例的教學,充分感受倍數和因數是相互依存的。
明確:倍數和因數表示的是兩個數之間的關系,所以不能單說誰是倍數,誰是因數。
(設計意圖:結合具體的乘法算式介紹倍數和因數時,讓學生充分地讀一讀,使學生初步感受倍數和因數是相互依存的,再通過對反例的辨析,使學生的感受更加深刻。)
接下來結合板書算式,考考大家誰是誰的倍數,誰是誰的因數?
若學生沒有舉到除法算式,就由老師舉例一道除法算式。“能說誰是誰的倍數,誰是誰的因數嗎?”
學生自由發言,統一認識。
小結:除法可以轉化成乘法,只要滿足兩個自然數的乘積等于另外一個自然數,它們之間就存在倍數和因數的關系。
第三個環節是探索方法,發現特征:分兩個層次進行,首先找一個數的因數,為了考查學生的動手有的可能是用乘法想(乘積是20的兩個數是20的因數)有的可能是用除法想(除數和商都是20的因數)這兩種方法都出現一個問題:無序。從而導致重復、遺漏現象。為了解決問題,我再次放手,小組交流,并在此基礎上讓學生自主探求”怎樣找才會有序,找到什么時候為止”?用自己的語言總結,最后師生達成共識:按一定的順序一對對的找,找到兩個數接近為止。并通過找三個數的所有因數,而找出引述的特征,從而在互相評價、充分比較、集體交流中感悟有序思考的必要性和科學性。
(“從學生的角度看問題是教學取得實效的關鍵”。本環節對學生可能出現的情況做了充分的預設,并通過兩次針對性的比較,使學生學會靈活地、有序地思考,及時引導學生用自己的語言總結找一個數因數的方法。然后通過嘗試做題鞏固方法。)
接下來找一個數的倍數。我將教學過程設計成了一個個問題鏈,什么樣的數是3的倍數?,怎樣找才能有條理?比一比誰找的倍數多?能把3的倍數全找完嗎,應該怎樣表示問題的答案?你有什么竅門找一個數的倍數?在學生自主探索的基礎上,小組合作,全班交流,并在找因數特征的基礎找到倍數的特征。
五、課后反思
學生在找一個數的因數時最常犯的錯誤就是漏找,即找不全。學生怎樣按一定順序找全因數這也正是本課教學的難點。所以在學生交流匯報時,我應該結合學生所敘思維過程,相機引導并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。這樣的板書幫助學生有序的思考,形成明晰的解題思路的作用是毋庸質疑的。但由于時間緊,我只口頭說了一下這樣學生找出所有的因數可能會慢些。如果能書寫下來,既避免了教師羅嗦的講解,又有效突破了教學難點,我相信像這樣潤物無聲的細節,無論于學生、于課堂都是有利無弊的,今后這方面要多注意。
五年級數學下冊《因數與倍數》教案 篇11
一、“認真細致”填一填:(40分)
1、因為15÷5=3,所以5是( )的因數,15是5的( )。
2、在10以內的自然數中,奇數有( ),偶數有( )。
質數有( ),合數有( )。
3、20的因數有( ),其中是質數的有( )。
4、既是奇數又是合數的最小數是( ),既是偶數又是質數的數是( )。
5、要使52 含有因數3, 里最小可填( );要使它是2的倍數, 里最大可填( )。
6、既是2的倍數,又是3的倍數的最大兩位數是( );既是2的倍數,又是5的倍數
的最小三位數是( );既是2、5的倍數,又有因數3的最小三位數是( )。
7、一個數既是12的倍數,又是12的因數,這個數是( )。
8、既是54的因數,又是6的倍數,這樣的數有( )。
9、三個連續偶數的和是42,這三個偶數分別是( )、( )和( )。
10、兩個質數和為18,積是65,這兩個質數是( )和( )。
二、“對號入座”選一選:(選擇正確答案的序號填在括號里)(40分)
1、最小的質數是( )。
【① 1 ② 2 ③ 3 】
2、一個合數至少有( )個因數
【① 1 ② 2 ③ 3 】
3、37是( )。
【① 因數 ② 質數 ③ 合數 】
4、下面說法錯誤的是( )。
【① 一個數的因數的個數是有限的,一個數的倍數的個數是無限的。
② 正方形邊長是質數,它的面積一定是合數。
③ 個位上是3、6、9的數都是3的倍數。】
5、下面說法正確的是( )。
【① 兩個奇數的和一定是2的倍數。
② 所有的奇數都是質數,所有的偶數都是合數。
③ 一個數的因數一定比這個數的倍數小。 】
6、最大兩位數的因數有( )個
【① 2 ② 3 ③ 4 】
7、下面是奇數又同時是3、5的倍數的數是( )。
【① 95 ② 90 ③ 75 】
8、20 = 4 5,4和5是20的( )。
【① 因數 ② 合數 ③ 質數 】
9、用0、3、4、5組成的所有四位數都是( )的倍數。
【① 2 ② 3 ③ 5 】
10、已知a、b、c是三個不同的非零自然數,且a = b c ,那么下面說法錯誤的是( )。
【① a一定是b的倍數。② a一定是合數。③ a一定是偶數。 】
三、走進生活,解決問題。(20分)
五年級數學下冊《因數與倍數》教案 篇12
教學目標:
1.從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。
2.培養學生抽象、概括的能力,滲透事物之間相互聯系、相互依存的辯證唯物主義的觀點。
3.培養學生的合作意識、探索意識,以及熱愛數學學習的情感。
教學重點:理解因數和倍數的含義。
教學過程:
一、創設情境,引入新課
師:每個人都有自己的好朋友,你能告訴我你的好朋友是誰嗎?
學生回答。
師:哦,老師知道了。是好朋友。如果他這樣介紹:是好朋友。能行嗎?
生:不行,這樣就不知道誰是誰的好朋友了。
師:朋友是表示人與人之間的關系,我們在介紹的時候就一定要說清楚誰是誰的朋友,這樣別人才能明白。在數學中,也有描述數與數之間關系的概念,比如說:倍數和因數。今天這節課我們就要來研究有關這個方面的一些知識。
二、探索交流,解決問題
1、師:我們已經認識了哪幾類數?
生:自然數,小數,分數。
師:現在我們來研究自然數中數與數之間的關系。請你們根據12個小正方形擺成的不同長方形的情況寫出乘、除算式。
根據學生的匯報板書:
112=12 26=12 34=12
121=12 62=12 43=12
12÷1=12 12÷2=6 12÷3=4
12÷12=1 12÷6=2 12÷4=3
師:在這3組乘、除法算式中,都有什么共同點?
生:第①組每個式子都有1、12這兩個數。
生:第②組每個式子都有2、6、12這三個數。
生:第③組每個式子都有3、4、12這三個數。
師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關系還有一種說法,你們想知道嗎?
師:2和6與12的關系還可以怎樣說呢?
生:2和6是12的因數,12是2的倍數,也是6的倍數。
師:也就是說,2和12、6的關系是因數和倍數的關系,這幾組算式中,誰和誰還有因數和倍數的關系?
生:3、4和12有因數和倍數關系,3和4是12的因數,12是3和4的倍數。
生:我認為1和12也有因數和倍數關系。1是12的因數,12是1的倍數。
生:可以說12是12的因數嗎?
生:我認為可以,121=12,1和12都是12的因數。
師:說得真好,從上面3組算式中,
我們知道1,2,3,4,6,12都是12的因數。
師出示:
1、根據下面的算式,說說哪個數是哪個數的倍數,哪個數是哪個數的因數。
12 5=60 45 ÷ 3=15
11 4=44 9 8= 72
2、8是倍數,4是因數。…………… ( )
強調:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數)。
因數和倍數不能單獨存在。
師出示:03 010
0÷3 0÷10
通過剛才的計算,你有什么發現?
生:我發現0和任何數相乘,都等于0。
生:0除以任何數都等于0。
生:我補充,0不能作為除數。
師:所以在研究因數和倍數時,我們所說的數一般指整數,不包括0。
師生小結:這節課,你們都學會了哪些知識?還有什么不明白的地方?
生:我有一個疑問,在26=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關系,這兩種說法一樣嗎?
師:這個問題提得好!誰能回答他的問題?
生:我覺得好像不一樣,但不知道為什么?
生:我認為不一樣,在26=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關系。
師:說的真好。這節課我們研究因數與倍數的關系中所說的因數不是以前乘法算式中各部分名稱中的“因數”,兩者可不能搞混哦!
2、
五年級數學下冊《因數與倍數》教案 篇13
學習內容:
人教版小學數學五年級下冊第21頁第8題、第22頁。
學習目標:
1.通過綜合練習,我能熟練掌握2、5、3的倍數的特征。
2.我能運用2、5、3的倍數的特征解決問題。
學習重點:
熟練掌握2、5、3的倍數的特征。
學習難點:
運用2、5、3的倍數的特征解決綜合問題。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享獨學部分的完成情況。
2.質疑探討。
三、合作探究
1.小組合作,完成課本第21頁第8題。
(1)3個3的倍數的偶數________________
(2)3個5的倍數的奇數________________
討論:你能說出3個既是3的倍數又是5的倍數的偶數或奇數嗎?
2.自主完成第22頁第10題,然后與同伴交流。
3.小組合作,完成第11題,然后組內代表匯報。
4.小組交流“生活中的數學”。
五年級數學下冊《因數與倍數》教案 篇14
下面是關于五年級下冊的說課稿《因數與倍數》,僅供參考!
《因數與倍數》說課稿
一、說教材
《倍數和因數》是小學人教版課程標準實驗教材五年級下冊第2單元的內容,也是小學階段“數與代數”部分最重要的知識之一。《因數和倍數》的學習,是在初步認識自然數的基礎上,探究其性質,其中涉及到的內容屬于初等數論的基本內容,相當抽象。在這一內容的編排上與以往的教材有所不同,沒有數學化的語言給“整除”下定義,而是在本課時通過乘法算式借助整除的模型na=b直接給出因數與倍數的概念。在地位上,這節課是因數、倍數的概念引入,為本單元后面的內容、以及第四單元的最大公因數、最小公倍數提供了必需且重要鋪墊。(注:教學目標、教學重、難點略)
二、說學情分析
本節課內容是五年級下冊的內容,但采取借班上課的形式,選取了四年級的學生。在此之前,學生已經已經分段認識了億以內的整數,基本完成了整數四則運算的學習(本學期剛學完)。但學生由于年齡的關系和個人思維發展的不同,在抽象能力和語言表達和思考的全面性方面需要老師的進一步引導。但由于本課是由乘法引入,且減少了以前老教材關于“整除”等繁雜概念,大大簡化了敘述和記憶的過程,預期學生是可以理解并掌握的。
三、說設計理念
本節課的在設計理念上,本人總結四點特點,而這四個特點也
剛好在我教學的四個環節中生成:
第一,從生活切入,實現數形結合,完成概念的有意義建構。
數論的內容,如果從數字本身出發進行研究,對小學生來說就抽象了些。本節課,教師以解決問題“12個小正方形拼成一個長方形,有哪幾種拼法?”為引子,讓學生在解決這個問題的過程中,學習數學概念,避開了抽象,有利于幫助學生完成有意義的建構。同時,在解決問題時,學生思考“哪幾種拼法”時,教師給出了不同的建議,可以想象,也可以在本子上畫一畫,這樣既符合不同的學生思維發展有不同,老師有針對的引導,其次,使數與形有機地結合,這樣,學生對概念的理解不僅是數字上的認識,而且能與操作活動與圖形描述聯系起來。學生經歷了“先形后數”的過程,也就是知識抽象的過程。
第二,抓住學生思維的“最近發展區”,促使學生學會有序思考,從而形成基本的技能與方法。
能列舉一個數的因數,是本節課技能目標中很重要的一部分。教學活動中,教師牢牢的抓住了學生思維的“最近發展區”,讓學生在已有經驗的基礎上,獨立的列舉一個數的因數,在集體交流的過程中,教師適時的追問“用什么方法找的?”,讓學生充分暴露個性化的思考方法,教師點撥出學生思維中各自的優勢:一對一對的找;從“1”開始有序的找,再通過有效分析,取得學生整體的認同。這樣的設計,讓學生在獨立思考——集體交流——互相討論過程中,學習有序思考,從而形成基本技能與方法,做到即關注了過程,又關注了結果。
第三,充分借助生成的素材,實現有效的合作探索,引導學生在比較中歸納尋找共性。
一個數的因數的特征,單憑記憶也不難接受,為防止學生進行“機械學習”,教師提出問題“任意一個自然數的因數有什么特點?”,讓學生觀察6、11、16和24的因數,思考:一個數的因數的個數是有限的還是無限的?其中最小的是幾?最大的是幾?教師在研究方法方面給學生提供了引導,學生的思維有了明確的指向,便于通過探索發現規律。
第四,重視數學意義的滲透與拓展,力求用數學的本質吸引學生,促進學生學習數學的持續發展。
數學教學,要樹立為學生的繼續學習、終身發展服務的意識,不能關注短效、急功近利。本節課的設計,教師就注意到了學生的學習后勁。如在備課之初,在是否需要完美數的介紹這一抉擇上,教師反復考慮:由于一節課的時間有限,為表達因數與倍數的整體關系,很多老師在設計內容時,都在一個課時就將求因數和求倍數的方法全部包含。但最終本人選擇舍去求倍數,把它放在了后面的課時學習,將完美數的介紹以及小故事納入本節課的教學,雖然此內容和現行學習任務之間的關系都不大,但卻是學生繼續學習數學所需要的,因為只有有了文化的氣息,數學才變得有了靈魂,讓學生感覺數學的厚重、數學的魅力,才能讓學生透過枯燥,產生對數學的積極情感,增強學習數學的持久動力。
四、說教學效果
上完課后,一些老師認為有部分學生并掌握到教學目標里的知識技能目標,未掌握到有效的方法,學生思維水平與表達方式有限,把這個內容拿來在四年級上并不合適。首先,本人認為,教師這節課的引導是有不足的,教學目標并未很好的實施。本人也曾經看過有大量名師找了四年級甚至三年級的學生上過這節課。從理論上說,只要基本能完成整數乘除法的學習的學生都可以進行這部分的學習。當然,放在每個年級來上出現的效果理應都會有不同。同樣,這節課四年級的學生有著他們自己的思維水平,由于學生的思維發展水平有限,出現一些思維的無序是非常合理的,作為老師不能太關注短效,不能太急功近利。然而,究竟是否該放在四年級來上,如果可以上,究竟怎樣把握教法與學法的度,各家之談,本人僅是做了一次不成熟的嘗試,只希望拋磚引玉,老師們可以給出更多的意見,作為一次有意義的談論。
五年級數學下冊《因數與倍數》教案 篇15
學習內容:
人教版小學數學五年級下冊第23、24頁。
學習目標:
1.我能理解什么是質數和合數,掌握了判斷質數、合數的方法。
2.我知道100以內的質數,記住了20以內的質數。
3.我能在自主探究中獨立思考,合作探究時暢所欲言。
學習重點:
能理解質數、合數的意義,正確判斷一個數是質數還是合數。
學習難點:
用恰當的方法找出100以內的質數;會給自然數分類。
教學過程:
一、導入新課
二、檢查獨學
1.互動分享收獲。
2.質疑探討。
3.試試身手:第23頁做一做。
三、合作探究
1.小組合作,利用課本24頁的表格,用恰當的方法找出100以內的質數,做一個質數表。
2.展示、交流:你們是怎樣找出100以內質數的?
3.小組討論:(1)有沒有最大的質數或合數?(2)根據因數的個數,可把非零自然數分成哪幾類?
我的想法________________________________
4.我能很快熟記20以內的質數。
5.獨立思考:
(1)是不是所有的質數都是奇數?(2)是不是所有的奇數都是質數?
(3)是不是所有的合數都是偶數?(4)是不是所有的偶數都是合數?
6.組內交流。
五年級數學下冊《因數與倍數》教案 篇16
一、說教材
1、單元分析
《因數與倍數》這章內容包括:因數和倍數;2,5,3的倍數特征;質數和合數,這些知識是在學生已經掌握了整數知識的基礎上,進一步探索整數的性質,屬于初等數論的基本內容,教材中首先用乘法算式直接給出了因數和倍數的概念,讓學生明確因數與倍數的相互依存關系;再此基礎上,讓學生根據已有的生活經驗探索2,3,5的倍數特征,其中在掌握了2的倍數的特征基礎上,又安排了偶數和奇數的概念;然后進一步探討因數和倍數的規律中認識質數和合數。本單元的知識內容比較抽象,概念也比較多,教材中恰當地運用了生活實例或具體情境來進行教學,培養學生的探究意識和抽象思維能力。通過這次復習,使學生頭腦里形成一個系統的知識網絡。
2、教學目標
知識目標:
歸納整理“因數與倍數”的有關概念,理解并掌握概念間內在聯系,形成認知結構。
技能目標:
親歷數學知識的整理過程,培養學生的觀察、分析、比較、概括、判斷等邏輯思維能力。
情感目標:
在整理和復習過程中,培養學生合作、交流的意識,滲透事物間互相聯系,互相依存的辨證思想。
3、教學重點
概念間的聯系和發展,運用所學知識解決問題。
4、教學難點
歸納和整理知識點,在整理中構建“因數與倍數”的知識網絡。
目標應該清晰簡明:
(1)形成知識網絡
(2)查缺補漏
(3)綜合運用知識
(4)解決實際問題
二、說學情分析
1、學生已經掌握了整數的有關知識,有一定的知識作為基礎;
2、作為五年級學生,抽象能力已經有了進一步的發展,具備了一定的思維基礎,能夠在活動中探索發現和總結歸納新知識;
3、對于概念的理解,要引導學生用聯系的觀點去掌握知識,不能死記硬背,機械地記憶概念和結論。
三、說教法與學法
1、加強對概念之間關系的梳理,引導學生用聯系的觀點,從本質上理解和掌握知識,避免死記硬背。
2、教師要恰當利用生活實例或具體情境,充分運用直觀手段溝通知識間的聯系,使學生能夠有條理,有根據地進行思考和分析。
3、根據學生的認知特點,小組合作復習,讓學生在交流探索中掌握知識,培養抽象思維能力。
四、說設計理念及教學策略
概念的教學,對學生而言,抽象且枯燥乏味,學生掌握這部分知識難度系數較大,所以課前要作好鋪墊,要做好準備,還要精心設計練習題。我在設計中先讓學生通過創設情境回顧梳理本單元的概念,以培養學生概括知識的能力,然后加以練習,在練習中明晰概念,深化理解,強調重難點。
五、說設計思路
1、教師教學環節:建立知識網絡——鞏固解題方法——強調重難點。
2、學生學習環節:分組整理知識點——明確重難點——鞏固知識點。
六、說教學過程
環節一:創設情境,激趣導入
讓學生用因數與倍數這一章知識,描述一下4和5。(設計意圖讓學生對本單元這些概念進行回顧)。
環節二:概念梳理,形成結構圖
這個環節教師引導學生一起根據這些有關數的概念及它們之間的聯系,把這些零散的概念,知識作一次梳理,把它整理成一個比較系統的知識網絡圖,也就是我的板書設計。(設計意圖:一看網絡圖,使學生腦海里凌亂的知識一下子一目了然,有助于學生理解這些概念,弄清它們之間的關系,并能培養學生梳理知識的能力。)
環節三:綜合應用,知識內化
通過填空、判斷、破譯手機號碼等技能訓練題,使學生將本單元知識內化,提高綜合運用的能力。
環節四:評價完善,課堂總結
(設計意圖:關注學生的情感體驗,通過自我評價的方式,使學生學會客觀,公正地評價自己的學習行為,學習態度,從中收獲積極的情感體驗。)
五年級數學下冊《因數與倍數》教案 篇17
課題名稱 因數與倍數 教學時間 兩課時(80分鐘) 學習者分析 學生學習這一內容之前已經理解掌握整數乘法,并知道乘法算式中的因數和倍數;學生對因數和倍數在字面上有一定的理解。 雖然有些理解,但也有一定的難度,不過能在老師的指導下嘗試完成教學問題。又由于學生個體差異較大,理解層次差異大,解決問題的能力、應用數學的能力還有待提高訓練。 教學目標 一、情感態度與價值觀 1. 體驗所學知識和現實生活的密切聯系,能應用所學知識解決生活中簡單的問題,從中獲得價值體驗。 2、培養學生的抽象、概括的能力,滲透事物之間相互聯系、相互依存的唯物辨證主義的觀念。 二、過程與方法 1. 培養學生的合作意識、探索意識,以及熱愛數學學習的情感; 2. 加強學生通過練習去培養發現問題的習慣,然后去尋求方法解決問題。 三、知識與技能 1. 從操作活動中理解因數與倍數的意義,會判斷一個數是不是另一個數的因數或倍數; 2. 能與大家交流自己解決問題的能力,培養口述能力。 教學重點、難點 1. 理解因數與倍數的意義。 教學資源 《p12-13頁的教學內容》教學過程描述 教學活動1[a1] 一、激發興趣,引入新課。 1、教師: 我們已經認識了哪幾種數?(并舉例說一說) 學生:自然數……,小數……,分數……。 2、引入新課。 剛才, 同學們的回答非常正確,舉例也很漂亮!!!(教師掌聲鼓勵……) 今天,我們再來研究自然數中數與數之間的關系。 ——板書:因數與倍數 教學活動2[a2] 二、帶著問題,探索新的學習任務。 1、讓學生觀察課本上的主題圖。并寫出不同情況的乘法算式和除法算式。 根據學生的匯報教師板書如下: 112=12 26=12 34=12 121=12 62=12 43=12 12÷1=12 12÷2=6 12÷3=4 12÷12=1 12÷6=2 12÷4=3 2、教師:在這3組乘除法算式中都有什么共同點? 3、學生匯報交流結果,觀察發現。 教學活動3[a3] 三、研究因數與倍數的意義。 1、教師:像黑板上這樣的乘除法式子中的三個數之間的關系還有一種說法,你們想知道嗎? 請看課本第12頁。 教師:2和6與12的關系還可以怎樣說呢? (2和6是12的因數,還可以說12是2的倍數,也是6的倍數) 2、教師:2、6和12的關系是因數與倍數的關系,在這幾組算式中,誰和誰還有因數和倍數的關系? 學生一:3、4和12有因數和倍數的關系,3和4是12的因數,12是3和4的倍數; 學生二: 1和12也有因數和倍數的關系,1是12的因數,12是1的倍數; 學生三…… 教師提問:能不能說12是12的因數呢? (學生:能。因為121=12,1和12都是12的因數。) 3、小結: 經過這三組算式的學習,我們知道1,2,3,4,6,12都是12的因數,同時,12是1,2,3,4,6,12的倍數。 四、教學討論:23÷4=5……3 1、提問:23是4的倍數嗎?為什么? (不是,因為23除以4有余數) 2、組織學生舉例誰是誰的倍數、誰是誰的因數,然后集體講評訂正。 五、教學討論:03 010 0÷3 0÷10 1、教師提問:有什么發現? (學生:發現0和任何數相乘都等于0,0除以任何數都等于0.) 2、教師強調!!! (1)、為了方便,在研究因數與倍數時,我們所說的數一般指的是不包括0的整數;(2)、這節課我們學的因數與倍數的關系中所說的因數不是以前乘法算式中各部分名稱的“因數”,切記兩者可不能搞混。 六、鞏固訓練。 1、下面每一組數中,誰是誰的倍數,誰是誰的因數。 16和2 4和28 55和11 72和9 2、下面的說法對嗎?為什么? (1)、48是6的倍數。 (2)、在58÷9=6……4中,58是9的倍數。 (3)、因為38=24,所以24是倍數,3和8是因數。 形式: 學生回答——學生講評——教師講評。 3、在36、4、9、12、3、0這些數中,誰和誰有因數和倍數的關系? 學生…… 教學活動4[a4] 七、作業布置。 《家庭作業》全做。 八、課堂小結。 通過今天這節課的學習,大家有什么收獲? (在學生談收獲的時候,教師不僅要讓學生談知識上的收獲——學會了用什么方法去探究新知識,還要讓學生談出學習方法上的收獲——新舊知識互補法、例舉事例突破法……。) 九、教學反思。 經過這兩節的師生合作學習,我發現達到了預期效果: 1、理解乘法算式中的因數和倍數與自然數中的因數和倍數的區別;2、理解自然數中的因數和倍數是表示數與數之間的關系;3、理解一個數的因數倍數具有多個性。 所存在的差距:理性地理解乘法算式中的因數和倍數與自然數中的因數和倍數的區別;知道自然數中的因數和倍數是表示數與數之間的關系;從飛機不同排列對因數和倍數的感性認識,到因數倍數多個性的理性理解。 教學中的確定問題:如何理解乘法算式中的因數和倍數與自然數中的因數和倍數的區別,從而理解自然數中的因數和倍數的概念;如何理解一個數因數倍數的多個性從感性認識到理性認識的轉變。這兩各問題還需加強教學。
[a1]利用學生對學習舊知識的記憶點撥,讓學生理解新的學習內容。 同時減輕學生學習新知識的壓力。 [a2]讓學生獨立計算,并感知大意。養成自主分析、尋找技巧去解決問題、交流成果的習慣。 [a3]通過教師反復指導點撥,小組交流討論,體會新 的學習內容,自己學會解決問題。從而體會到因數與倍數的意義。 [a4]通過這個課后小結,以加深學生對新課的理解程度,同時對還沒有學會的 要去弄懂。