畫正多邊形(一)
教學(xué)目標(biāo):
1、使學(xué)生了解用量角器等分圓心角來等分圓,從而可以作出圓內(nèi)接或圓外切正多邊形.
2、使學(xué)生會用尺規(guī)作圓內(nèi)接正方形和正六邊形,在這個(gè)基礎(chǔ)上能作圓內(nèi)接正八邊形、正三角形、正十二邊形.
3、通過畫圖培養(yǎng)學(xué)生的畫圖能力;
4、通過畫正方形到會畫正八邊形,通過畫六邊形到畫三角形、正十二邊形,培養(yǎng)學(xué)生觀察、抽象、遷移能力.
5、通過畫圖中需減小積累誤差的思考與操作,培養(yǎng)學(xué)生解決實(shí)際問題的能力.
教學(xué)重點(diǎn):
(1)用量角器等分圓心角來等分圓,然后作出圓內(nèi)接或圓外切正多邊形;(2)用尺規(guī)作圓內(nèi)接正方形和正六邊形.
教學(xué)難點(diǎn):
準(zhǔn)確作圖.
教學(xué)過程:
一、新課引入:
前幾課我們學(xué)習(xí)了正多邊形的定義、概念、性質(zhì)、判定,尤其學(xué)習(xí)了正多邊形與圓關(guān)系的兩個(gè)定理,而后我們又學(xué)習(xí)了正多邊形的有關(guān)計(jì)算,本堂課我們一起學(xué)習(xí)畫正多邊形.
二、新課講解:
由于正多邊形在生產(chǎn)、生活實(shí)際中有廣泛的應(yīng)用性,所以會畫正多邊形應(yīng)是學(xué)生必備能力之一,前面已學(xué)習(xí)了正多邊形和圓的關(guān)系的第一個(gè)定理,即把圓分成n(n≥3)等份,依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形;過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形,所以想到只要知道外接圓半徑r或內(nèi)切圓半徑rn,畫出圓來,然后n等分圓周就能畫出所需的正n邊形.
n等分圓周的方法有兩種,一種是量角器法,這一種方法簡單易學(xué),它是一種常用的方法.其根據(jù)是因?yàn)橄嗟鹊膱A心角所對弧相等,所以使用量角器等分圓心角,可以達(dá)到把圓任意等分的目的,由于學(xué)生已具備使用量角器的能力,所以只要講明根據(jù),讓學(xué)生動手操作即可.
另一種方法是用尺規(guī)等分圓周法,其實(shí)質(zhì)也是等分圓心角,但尺規(guī)不能任意等分圓,只適用于一些特殊情況,其中重點(diǎn)是正方形和正六邊形的作法,這是因?yàn)檎诉呅巍⒄切巍⒄呅味际怯纱俗骰A(chǔ)而畫出來的.
由于尺規(guī)作圖在理論上準(zhǔn)確,但在實(shí)際操作中有誤差積累,如何減少誤差使圖形趨于準(zhǔn)確?這是一個(gè)鍛煉學(xué)生解決問題的好時(shí)機(jī),應(yīng)讓學(xué)生親手實(shí)驗(yàn)、觀察對比,從而得出結(jié)論.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
復(fù)習(xí)提問:1.哪位同學(xué)記得正多邊形與圓關(guān)系的第一個(gè)定理?(安排中下生回答)2.哪位同學(xué)記得在同圓或等圓中,相等的圓心角所對的弧有什么性質(zhì)?(安排中下生回答:相等的圓心角所對的弧相等)
現(xiàn)在我們要畫半徑為r的正n邊形,從正多邊形與圓關(guān)系的第一個(gè)定理中,你有什么啟發(fā)?(安排學(xué)生相互討論后,讓中等生回答:只要把半徑為r的圓n等分,依次連結(jié)n個(gè)等分點(diǎn)就得正n邊形)那么怎樣把半徑為r的圓n等分呢?從剛才復(fù)習(xí)的第二問題中,你又受到什么啟發(fā)?大家相互間討論.(安排中等生回答:把360°的圓心角n等分)如果要作半徑2cm的正九邊形,你打算如何作呢?大家互相討論看看.(安排中等生回答:先畫半徑2cm的圓,然后把360°的圓心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我們本堂課所講畫正多邊形的第一種方法就是用量角器等分圓,大家用量角器畫出半徑為2的內(nèi)接正九邊形.
學(xué)生在畫圖實(shí)踐中必然出現(xiàn)兩種情況:其一是依次畫出相等的圓心角來等分圓,這種方法比較準(zhǔn)確,但是麻煩;其二是先用量角器畫一個(gè)40°的圓心角,然后在圓上依次截取40°圓心角所對弧的等弧,于是得到圓的9等分點(diǎn),這種方法比較方便,但畫圖的誤差積累到最后一個(gè)等分點(diǎn),使畫出的正九邊形的邊長誤差較大.對此學(xué)生必然迷惑不解,在此教師應(yīng)肯定作法理論上的正確性,然后講出圖形不夠準(zhǔn)確的原因是由于誤差積累的結(jié)果,然后引導(dǎo)學(xué)生討論,研究減小誤差積累的二個(gè)途徑:其一,調(diào)整圓規(guī)兩腳間的距離,使之盡可能準(zhǔn)確的等于所畫正九邊形的邊長.其二,若有可能,盡可能減少操作次數(shù),減少產(chǎn)生誤差的機(jī)會.