圓
1、教材分析(1)知識結構
(2)重點、難點分析
重點:①點和圓的三種位置關系,圓的有關概念,因為它們是研究圓的基礎;②五種常見的點的軌跡,一是對幾何圖形的深刻理解,二為今后立體幾何、解析幾何的學習作重要的預備.
難點:① 圓的集合定義,學生不輕易理解為什么必須滿足兩個條件,內容本身屬于難點;②點的軌跡,由于學生形象思維較強,抽象思維弱,而這部分知識比較抽象和難懂.
2、教法建議
本節內容需要4課時
第一課時:圓的定義和點和圓的位置關系
(1)讓學生自己畫圓,自己給圓下定義,進行交流,歸納、概括,調動學生積極主動的參與教學活動;對于高層次的學生可以直接通過點的集合來研究,給圓下定義(參看教案圓(一));
(2)點和圓的位置關系,讓學生自己觀察、分類、探究,在“數形”的過程中,學習新知識.
第二課時:圓的有關概念
(1)對(a)層學生放開自學,對(b)層學生在老師引導下自學,要提高學生的學習能力,非凡是概念較多而沒有很多發揮的內容,老師沒必要去講;
(2)課堂活動要抓住:由“數”想“形”,由“形”思“數”,的主線.
第三、四課時:點的軌跡
條件較好的學校可以利用電腦動畫來加深和幫助學生對點的軌跡的理解,一般學校可讓學生動手畫圖,使學生在動手、動腦、觀察、思考、理解的過程中,逐步從形象思維較強向抽象思維過度.但我的觀點是不管怎樣組織教學,都要遵循學生是學習的主體這一原則.
第一課時:圓(一)
教學目標:
1、理解圓的描述性定義,了解用集合的觀點對圓的定義;
2、理解點和圓的位置關系和確定圓的條件;
3、培養學生通過動手實踐發現問題的能力;
4、滲透“觀察→分析→歸納→概括”的數學思想方法.
教學重點:點和圓的關系
教學難點:以點的集合定義圓所具備的兩個條件
教學方法:自主探討式
教學過程設計(總框架):
一、 創設情境,開展學習活動
1、讓學生畫圓、描述、交流,得出圓的第一定義:
定義1:在一個平面內,線段oa繞它固定的一個端點o旋轉一周,另一個端點a隨之旋轉所形成的圖形叫做圓.固定的端點o叫做圓心,線段oa叫做半徑.記作⊙o,讀作“圓o”.
2、讓學生觀察、思考、交流,并在老師的指導下,得出圓的第二定義.
從舊知識中發現新問題
觀察:
共性:這些點到o點的距離相等
想一想:在平面內還有到o點的距離相等的點嗎?它們構成什么圖形?
(1) 圓上各點到定點(圓心o)的距離都等于定長(半徑的長r);
(2) 到定點距離等于定長的點都在圓上.
定義2:圓是到定點距離等于定長的點的集合.