《小數乘法》教學設計(通用8篇)
《小數乘法》教學設計 篇1
教學內容:人教版小學數學教材五年級上冊第2~3頁例1、例2及“做一做”,練習一第1~5題。
教學目標:
1.使學生理解小數乘整數的算理,掌握小數乘整數的一般方法,會比較熟練地進行筆算。
2.使學生經歷將小數乘整數轉化為整數乘整數的過程,自主探索小數乘整數計算方法的過程,滲透轉化的數學思想,培養簡單的邏輯推理能力。
3.使學生體會小數乘法在實際生活中的應用,感受數學源于生活,生活需要數學,形成積極的學習態度。
教學重點:掌握小數乘整數的一般計算方法。
教學難點:理解小數乘整數的算理。
教學準備:課件。
教學過程:
一、情境引入,提出問題
(一)課件呈現,尋找信息
1.課件呈現“放風箏”的情境以及各種不同形狀的風箏。
2.課件呈現“買風箏”的情境(例1的主題圖),畫面上醒目地顯示四種形狀各異、價格不同的風箏。
3.設問:從圖中你能看出哪些數學信息?
(二)提出問題,揭示課題
1.這節課我們就一起先來解決“買3個蝴蝶風箏多少錢”的問題,你能列出算式嗎?(教師板書或ppt課件呈現:3.5×3=)
2.追問:這個算式和我們以前學過的算式有什么不同呢?
3.引導:今天我們就來學習小數乘整數。(板書課題:小數乘整數)
二、自主嘗試,感悟算理
(一)感知算理
1.算一算:3.5×3,可以怎樣計算?
給足時間,讓每一位學生根據自己的知識和經驗獨立計算出買3個蝴蝶風箏所需的錢數。教師巡視,注意發現學生中的不同計算思路。
2.說一說:你是怎樣計算的?
學生的計算思路可能有:用加法進行計算;改寫為復名數進行計算;化“元”為“角”進行計算等。
(二)重點分析、研討化“元”為“角”算法的算理
1.組織全班學生對上述多種不同解法逐一進行分析、評價和充分肯定。
2.引導學生著重分析化“元”為“角”的計算方法。
(1)師:上述幾種算法中,你認為哪種算法比較簡單?這種算法中的關鍵是什么?
(2)學生分析、對比、討論后,引導學生用簡潔的話總結、概括:先把3.5元轉化為35角,再計算35角×3,最后將結果105角轉化成10.5元。
(3)教師邊小結邊適時板書(或ppt課件動態呈現)如下豎式計算過程:
(4)小結:剛才我們在解決“買3個蝴蝶風箏多少錢”的問題時,想到了各種不同的計算方法。我們發現以“元”作單位的小數乘整數,可以轉化成以“角”(或“分”)作單位的整數乘整數來進行計算。
【設計意圖:依托現實情境,讓學生利用已有的知識經驗,用自己理解的方法自主解決問題。在充分肯定學生的其他合理方法之后,著重分析和評價化“元”為“角”的算法,引導學生總結、概括這種算法的思考過程,體會小數乘法和整數乘法的聯系,感受小數乘整數還可以轉化成整數乘整數進行計算,初步感悟小數乘整數的算理和算法,培養學生的數學思維能力。】
(三)鞏固化“元”為“角”的計算方法
1.第2頁“做一做”第1題。
(1)學生獨立完成,教師指名演板。
(2)重點評價“把4.6元看作46角”進行計算的方法。
2.第2頁“做一做”第2題。
(1)學生獨立完成。
(2)組織學生交流解決問題的思路和方法(主要關注下面兩種方法)。
方法一:先算出具體的錢數6.4元×7=44.8元,再與40元進行比較,做出判斷。
方法二:直接通過估算解決,一個燕子風箏的價格是6.4元,超過了6元,買7個就超過了42元,所以40元不夠。
(3)拓展:50元夠嗎?
三、運用轉化,探究算法
(一)動態呈現小數乘整數的過程
1.出示算式0.72×5=?,提問:“0.72不是錢數,怎樣計算?”
2.讓學生獨立思考,再引導學生提出:“能不能轉化成整數來計算?”
3.學生嘗試列豎式計算。(教師巡視,了解學生的計算方法。)
4.小組交流計算方法。
5.學生全班集體交流轉化過程和計算方法,教師適時板演(或pp課件演示)乘法豎式計算過程,幫助學生理解算理算法。
(教師重點引導學生理解三點:怎樣把因數0.72轉化成整數?乘得的積應如何處理?積末尾的“0”如何處理?從而使學生更好地理解算理。)
由于因數0.72化成整數72必須“×100”,所以要使積不變,積360應“÷100”。
(二)將乘得的積化成最簡小數
請學生觀察乘得的積“3.60”,提問:3.60是最簡小數嗎?(不是!)提醒學生,乘得的積如果不是最簡小數,可以根據小數的基本性質將積中小數末尾的0去掉。
(三)小結小數乘整數的一般方法
1.引導學生回顧3.5×3、0.72×5的計算過程。
2.提問:“想一想,在計算小數乘整數時,你先做什么?再做什么? 最后又做什么?”
3.引導學生在理解的基礎上歸納小數乘整數的一般方法:
(1)先將小數轉化為整數;
(2)按整數乘法算出積;
(3)再確定積的小數點位置。(因數有幾位小數,就從積的右邊起數出幾位,點上小數點。若積的末尾有“0”,末尾的“0”可以去掉。)
四、拓展應用,鞏固新知
(一)專項練習
1.小數乘整數與整數乘整數的對比。(第3頁“做一做”第1題)
(1)引導學生審題,明確題目要求,學生獨立完成。
(2)組織學生交流、討論,歸納小數乘整數與整數乘整數的不同:小數乘整數中有一個因數是小數,整數乘整數中兩個因數都是整數;小數乘整數的積中,若小數末尾有0,這個0可以去掉,但整數乘整數的積末尾的0不能去掉。
2.確定積的小數點。(第3頁“做一做”第2題)
(1)學生獨立完成。
(2)組織學生交流:你是怎樣確定積的小數點的位置的?積末尾的0是怎樣處理的?
(二)計算練習(第3頁“做一做”第3題)
1.學生獨立完成,教師巡視,了解學生計算情況。
2.組織學生交流,著重交流第二個因數是兩位數的兩道小數乘法計算題(2.3×12和3.13×53)是怎樣計算的。
(三)趣味練習(智慧島)
1.小狗登城堡。
2.小金魚戲水。
3.小蜜蜂采蜜。
(四)應用練習
1.練習一第3題。
(1)引導學生正確用合適的方法估計自己家到學校的路程。如:用步測的方法估計,知道自己的步長約為0.6 m,從自己家到學校約走多少步,用步長0.6 m乘走的步數,就得到自己家到學校的大致路程。
(2)通過計算自己每天、每周上學要走的路程,鞏固小數乘整數的計算方法,加深對一千米有多長的具體的感受。
2.練習一第4題。
(1)第4題是根據第一列的積,寫出其他各列的積。
(2)本題利用表格的形式,讓學生在按從左到右的順序逐列寫出積的過程中,自覺地應用積的變化規律,并打通小數乘法與整數乘法之間的聯系,體會到小數乘法與整數乘法有什么相同和不同。
五、課堂總結,深化新知
這節課我們學到了什么?你是怎么學會的?
六、課外作業
1.練習一第1、5題。
2.練習一第2題,是聯系學生的主要學習資源——課本進行的計算活動,應讓學生先自己去了解五門學科課本的單價,然后再計算、填空。
《小數乘法》教學設計 篇2
教學內容:人教版小學數學教材五年級上冊第11頁例6及“做一做”,練習三第1~3題。
教學目標:
1.使學生在比較熟練地掌握了小數乘法計算方法的基礎上,能根據實際需要和題目要求正確地用“四舍五入”法求積的近似數。
2.培養學生靈活、合理地運用求積的近似數的方法解決實際問題的意識和能力。
3.使學生進一步體會數學知識之間、數學知識與現實生活之間的聯系,提高學習數學的信心和興趣。
教學重點:正確地用“四舍五入”法求積是小數時的近似數。
教學難點:初步理解求積的近似數往往是“實際應用”的需要。
教學過程:
一、以舊引新,激活經驗
1.計算下面各題。
1.5×24 0.37×2.6 4.02×8.3
(1)學生獨立完成,指名演板,集體訂正。
(2)說一說小數乘法應該怎樣進行計算?
2.求下面各小數的近似數。
保留一位小數:3.12;5.549;0.3814。
保留兩位小數:4.036;7.7963;8.42378。
(1)獨立完成,集體反饋。
(2)7.7963的近似數為什么是7.80?
(3)我們剛才是用什么方法來求小數的近似數的?用這種方法求小數的近似數應該注意什么?
【設計意圖:由于本課學習內容涉及小數乘法計算和用“四舍五入”法求近似數的應用,而學生對“四舍五入”法已經有較長時間沒有接觸了,所以通過簡單復習,幫助學生喚起對已學知識,特別是對“四舍五入”法的記憶,為后續學習做好知識準備。】
二、創設情境,自主探究
(一)談話導入,揭示課題
1.談話導入:在實際應用中,小數乘法的積往往不需要保留很多的小數位數,這時可以根據需要,按“四舍五入”法保留一定的小數位數,求出積的近似數。(ppt課件呈現談話內容。)
2.揭示課題:積的近似數。(板書課題:積的近似數)
(二)了解信息,解決問題
1.出示情境圖(ppt課件)。
小狗正在做什么?人們訓練小狗緝毒是利用了小狗的什么特點?小狗嗅覺靈敏與嗅覺細胞的數量多少有很大關系,下面請看一個與之相關的實際問題。
2.出示例6(ppt課件)。
(1)題目中有哪些數學信息?提出了什么問題?
(2)你會解答這個問題嗎?怎樣解答?
(3)題目中對解答這個問題有什么特殊要求?
(4)這里的“得數保留一位小數”表示要求出積的近似數,那么條件中的“0.049億”是近似數還是準確數呢?為什么不用準確數?
3.學生獨立嘗試,指名兩名學生演板。
4.組織學生觀察、評價黑板上兩名演板同學的解答過程。
5.組織學生交流、反饋自己的解答過程。(教師適時演示ppt課件。)
(1)你是怎樣解決這個問題的?
(2)解決這個問題時需要注意什么?
(3)你是怎樣將“得數保留一位小數”的?
(4)寫橫式的得數時要注意什么?
【設計意圖:本環節的教學除了通過例題中對得數的要求來揭示求“積的近似數”的教學內容外,還有意識地引導學生判斷已知條件中“0.049億”是近似數還是準確數?為什么不用準確數?進一步讓學生體會在實際應用中有時準確數既無必要又不可能,而用近似數就可以了。至于例題的具體解答過程,難度并不大,放手讓學生自己去解決,教師只是在重點處有針對性地引導學生交流、反饋,突出用“四舍五入”法求積的近似數的方法和過程,強調書寫時應注意的細節。】
三、鞏固練習,強化認知
(一)求“積的近似數”的基本練習
1.第11頁“做一做”第1題。
(1)出示題目(ppt課件)。
1.計算下面各題。
0.8×0.9 (得數保留一位小數)
1.7×0.45 (得數保留兩位小數)
(2)全班齊練,指名兩人演板。
(3)集體訂正。
2.補充題。
(1)出示題目(ppt課件)。
補充題:
將“1.35×0.96”的積用“四舍五入”法保留兩位
小數,所得的近似數是( )。
a.1.29 b.1.30 c.0.13
(2)學生獨立思考,用自己的方法進行判斷和選擇。
(3)組織學生集體交流自己是怎樣做出判斷和選擇的。(教師強調:用“四舍五入”法按要求保留小數位數時,所求得近似數末尾的“0”必須保留,不能隨意去掉。)
(二)求“積的近似數”的實際應用
1.第11頁“做一做”第2題。
(1)出示問題(ppt課件):一種大米的價格是每千克3.85元,買2.5 kg應付多少錢?
(2)全班齊練,教師巡視。(選擇兩名同學演板,一人的得數是準確數,一人的得數是近似數。)
(3)集體訂正,追問質疑。
質疑一(對得數是準確數的同學):這節課學習的是求“積的近似數”,你為什么用準確數表示求得的積?
質疑二(對得數是近似數的同學):這一題的問題沒有保留幾位小數的要求,你為什么用近似數表示求得的積?
2.集體討論。
(1)再遇到這樣的實際問題,我們應該怎樣處理?
(2)通過這道題的解答,你感受到了什么?(在實際應用中,應該根據需要按“四舍五入”法保留一定的小數位數,求出積的近似數。)
【設計意圖:用“做一做”的第1題和補充的選擇題來鞏固求積的近似數的方法。而在“做一做”的第2題中,不同的學生可能會有不同的處理方式,如:有的求的是積的準確值,有的求的是積的近似數,甚至求出的近似數也可能不完全相同,可能保留的是兩位小數,也可能保留的是一位小數,還有“舍”與“入”的問題。教師應充分利用這些生成的教學資源,及時進行評價,引導學生在比較和爭論中積極思考,讓這些豐富的資源引發出精彩、自然的認知沖突,讓學生從實際例子中體會求積的近似數往往是“實際應用”的需要。】
四、全課總結,暢談收獲
談談這節課你有哪些收獲?
五、作業練習
1.課堂作業:練習三第1題第(2)小題、第3題。
2.家庭作業:練習三第1題第(1)小題、第2題。
《小數乘法》教學設計 篇3
教學內容:人教版小學數學教材五年級上冊第7頁例5及“做一做”,練習二第6~8題。
教學目標:
1.經歷在實際問題中收集和獲取信息的過程,會正確利用小數倍解決實際問題,正確計算小數乘法。
2.掌握小數乘法的驗算方法,體驗解決問題方法的多樣性,形成修正錯誤、嚴謹求實的科學態度。
3.形成獨立思考、反思質疑的學習習慣,體驗知識遷移的學習方法。
教學重點:利用小數倍解決實際問題。
教學難點:合理選擇小數乘法的驗算方法。
教學準備:課件、投影儀、計算器。
教學過程:
一、復習鋪墊,激活經驗
1.口算下面各題,看誰算得又對又快。(將答案按順序記錄在口算本上,再集體訂正。)
3×0.5= 0.7×4= 2.1×3= 1.1×8=
9×0.8= 1.5×2= 0.7×0.8= 2.5×0.4=
2.解答:一支鉛筆0.5元,一支水性筆的價錢是一支鉛筆的3倍。一支水性筆多少錢?(指名學生回答:為什么用乘法計算?)
3.回顧:前面我們學習了關于小數乘法的哪些知識?
(學生自由回答,教師適時引導,整理回顧小數乘法的計算法則、確定積的小數點位置的方法以及積與因數的大小關系等。)
【設計意圖:幫助學生回憶舊知,梳理已有的知識經驗,激活學生頭腦中與本課相關的已有知識,為探究新知奠定基礎。】
二、情境導入,自主探索
(一)創設情境,揭示課題
1.呈現教材主題情境圖(ppt課件),讓學生獨立收集信息。
2.交流整理:從這幅圖中你知道了哪些數學信息?(教師結合學生的回答,在課件上適時強調、突出相關的數學信息。)
(1)非洲野狗的最高速度是56千米/時;
(2)鴕鳥的最高速度是非洲野狗的1.3倍;
(3)要求的問題是“鴕鳥的最高速度是多少千米/時”。
3.揭示課題:今天我們繼續學習小數乘法——利用小數倍解決問題。〔板書課題:小數乘小數(2)〕
(二)自主探究,解決問題
1.你們會解決這個問題嗎?
(1)學生獨立嘗試,在練習本上列式并解答。
(2)教師巡視,收集個案,并指名演板。
2.獨立思考,小組交流。(ppt課件出示,給予獨立思考的時間。)
(1)為什么用乘法計算?
(2)怎樣計算小數乘法56×1.3 ?
(3)你算得對嗎?
3.匯報梳理,構建方法。
(1)以前學習的“求一個數的整數倍是多少”,用乘法計算。那么求“一個數的小數倍是多少”也用乘法計算。(板書:求一個數的小數倍用乘法計算。)
(2)在計算小數乘法時,先按整數乘法算出積,再點小數點;點小數點時,看因數中一共有幾位小數,就從積的最右邊起數出幾位,點上小數點。
(3)集體交流、核對。
【設計意圖:在情境中啟發學生思考,通過舊知遷移領悟用小數表示兩個數量之間的倍數關系。激發學生自主參與小數乘法的計算興趣,在匯報交流中理解為什么要用乘法計算,進一步熟悉小數乘法的計算方法,充分提升學生自主學習的能力。】
(三)回顧檢驗,適當修正
1.出示教材中小朋友的計算過程(ppt課件)。(師:同學們,計算后我們往往需要檢查計算結果是否正確。瞧!)
2.請你幫這位小女孩驗算一下,她算得對嗎?(獨立完成。)
3.交流匯報,明確方法。(教師巡視。)
(1)把因數的位置交換一下,乘一遍,看對不對。(ppt課件呈現驗算過程。)
(2)用計算器來驗算。(投影演示。)
(3)根據積與因數的大小關系來驗算。由于56乘1.3的積應該比56大,而7.28比56小,所以7.28肯定是計算錯了。
4.檢查過程,修正錯誤。
(1)師:同學們,在計算時我們往往先入為主,如果再算一遍,不一定能檢查出計算中的錯誤,所以我們可以從剛才同學們使用的各種驗算方法中選擇適當的方法進行檢查。
(2)師:在解決問題時,我們除了要檢查計算是否正確以外,還要檢查橫式的得數寫了沒有,寫對了沒有?得數的單位名稱是否正確?同學們,再檢查一下,除了計算還有沒有其他的問題,相互督促改正。
5.隨堂鞏固。(第7頁“做一做”。)
(1)獨立完成。
(2)集體訂正。針對課堂中生成的問題,有目的地投影展示,學生評價與小結。
【設計意圖:利用教材中小女孩的計算錯誤,激活學生對整數乘法驗算方法的回憶。為感受驗算方法的多種策略,先放手讓學生自己驗算,再組織學生交流匯報。具體驗算時,不要求學生一定按某種方法驗算,只要能選擇有效的方法對計算結果做出判斷即可,注重提高學生的思維能力和計算能力,讓學生形成修正錯誤、嚴謹求實的科學態度。】
三、鞏固練習,拓展延伸
(一)基本練習
1.練習二第6題(第二排的3道小題)。
(1)先計算,再驗算。
(2)展示匯報,集體訂正。
(3)訂正時注意0.072×0.15的計算過程與驗算方法。(按照整數乘法算出72乘15的積是1080,由于兩個因數中一共有五位小數,而積的小數位數只有四位,先要在前面補一個“0”,再點上小數點,最后將積的小數末尾的“0”去掉,得0.0108。)
2.練習二第8題的第一問:這只長頸鹿高多少米?
(1)認真審題,明確問題。(明確第一問要解答的問題。)
(2)獨立思考,解決問題。
(3)交流匯報,集體訂正。(強調用小數倍直觀地表示兩個數量之間的關系。)
(二)提高練習
練習二第8題的第二問:梅花鹿比長頸鹿矮多少米?
(1)獨立思考,自主解題。
(2)思考:如果直接求“梅花鹿比長頸鹿矮多少米”,你還能用別的方法解答嗎?
【設計意圖:通過不同層次的練習,促使學生不斷鞏固小數乘法的計算方法,提高利用小數倍解決問題的能力,豐富學生解決問題的策略,培養學生的應用意識。】
四、課堂總結,梳理知識
(一)回顧
1.今天這節課我們學習了哪些知識?
2.你是用以前學習的哪些知識來解決今天遇到的新問題?
(二)梳理
1.繼續學習了小數乘法計算。
2.用小數倍表示兩個數量之間的關系,并用小數倍解決問題,用小數倍解決問題與以前學過的用整數倍解決問題的方法是一樣的。
3.計算后一定要驗算,針對不同的計算類型可以靈活地選擇合適的驗算方法,發現錯誤要及時改正。
【設計意圖:通過課堂總結與梳理,讓學生明確本節課的學習目標是否達成,養成及時梳理知識、總結學習方法的良好習慣,提升學生的認知水平。】
五、課堂練習
1.練習二第6題(第一排)。
2.練習二第7題。
《小數乘法》教學設計 篇4
教學內容:人教版小學數學教材五年級上冊第5~6頁例3、例4及“做一做”,練習二第1~5題。
教學目標:
1.通過舊知遷移,引導學生自主探究、逐步理解小數乘小數的算理,掌握基本算法。
2.使學生掌握在確定積的小數點位置時,小數位數不夠的,要在前面用0補足;引導學生發現一個因數比1大(或小)時,積和另一個因數的大小關系。
3.培養學生運用遷移的數學思想解決新問題的能力。
教學重點:小數乘小數的計算方法。
教學難點:小數乘法中積的小數位數和小數點位置的確定。
教學準備:課件、課本。
教學過程:
一、類比遷移,情境展開
教學例3。
1.出示例題。
(1)師:同學們,最近我們要給學校宣傳欄刷油漆,你能幫忙算算需要多少千克油漆嗎?
(2)師:在計算需要多少千克油漆之前,需要先算出什么呢?
(3)板書(或用ppt課件演示):2.4×0.8=________
2.嘗試計算。
(1)師:同學們,請觀察這個小數乘法算式,它與我們上節課學習的小數乘法有什么不同?(兩個因數都是小數。)
(2)師:我們上節課學習的小數乘整數是怎樣計算的?那兩個因數都是小數又怎么計算呢?
(3)師:小數乘整數是把小數轉化成整數進行計算的,現在能否還用這個方法來計算2.4×0.8呢?如果能,應該怎樣做?
(4)指名學生口答,教師適時板書(或ppt課件演示)學生的討論結果。
3.理解算理。
引導學生得出:先把第一個因數2.4乘10變成24,積就乘了10;再把第二個因數0.8乘10變成8,積就又乘了10,這時的積就乘了100。要得到原來的積,就應把乘得的積192除以100,得1.92。
4.進一步明確算理(兩個因數的小數位數不同)。
(1)計算出了宣傳欄的面積后,怎樣計算需要多少千克油漆呢?
(2)板書(或用ppt課件演示):1.92×0.9=________
(3)師:這道題也可以先按整數乘法計算嗎?積里的小數點應該點在哪里呢?
【設計意圖:在給宣傳欄刷油漆的問題背景下,遷移已有的小數乘整數的經驗,為學生進一步探究小數乘小數的計算方法奠定堅實的基礎。】
二、深化探究,總結算法
(一)探究因數與積的小數位數的關系
1.學生獨立完成第5頁的“做一做”。
2.師:觀察例3及“做一做”各題中因數與積的小數位數,你能發現什么?
(二)小結小數乘法的計算方法
1.組織學生回顧、討論小數乘法是怎樣計算的。
2.組織學生匯報、交流自己的計算方法。
(1)師:你是怎樣計算的?(先按整數乘法算出積,再點小數點。)
(2)師:怎樣確定積的小數點的位置?(點小數點時,先看因數中一共有幾位小數,就從積的最右邊起數出幾位,再點上小數點。)
3.根據學生的討論和交流,逐步歸納概括出小數乘法的計算方法,并讓學生將教材第6頁小數乘法的計算方法補充完整。
【設計意圖:教材上安排了計算方法的小結,通過本環節的教學有意識地培養學生由具體到抽象的歸納概括能力。】
三、引發沖突,突破難點
(一)教學例4
1.出示例題。
(1)師:同學們,我們剛剛總結了小數乘法的計算方法,你能運用小數乘法的計算方法來計算下面這道題嗎?
(2)板書(或用ppt課件演示):0.56×0.04=________
2.嘗試計算。
(1)學生嘗試計算,教師巡視,了解學生的計算情況和遇到的問題。
(2)師:在計算時,遇到了什么新問題?
(3)師:乘得的積的小數位數不夠時,怎樣點小數點呢?
(二)及時鞏固
1.學生獨立完成教材第6頁“做一做”的第1題。
(其中既有一般的小數乘法,也有積的小數末尾有0和積的小數位數不夠的類型,幫助學生全面掌握小數乘法的計算。)
2.學生完成教材第6頁“做一做”第2題的計算。
(三)探究積與因數的大小關系
1.集體訂正“做一做”第2題時,引導學生分別將每組題中計算的結果和第一個因數比較大小,發現其中的規律。
2.組織學生交流、總結自己發現的規律。
(1)一個數(0除外)乘大于1的數,積比原來的數怎么樣?
(2)一個數(0除外)乘小于1的數,積比原來的數怎么樣?
3.幫助學生進一步明確積與因數的大小關系,并結合具體例子明確應用這個關系可以判斷乘法計算中的一些錯誤。
【設計意圖:“乘得的積的小數數位不夠,怎么點小數點?”是小數乘法中的難點,讓學生用剛剛總結的小數乘法的計算法則來進行例4的計算,意圖就是引發學生的認知沖突,促成學生用已有的知識和經驗化解沖突,解決遇到的新問題,從而突破學習難點。引導學生自主探索積和因數之間的大小關系,不僅為確定小數點的位置提供了操作依據,避免在確定積的小數位數時發生錯誤,而且也有利于培養學生的探究意識和分析歸納能力。】
四、實踐應用,內化提升
(一)基本練習
1.練習二第1題(基本計算)。
(1)學生獨立練習。
(2)組織學生交流和訂正。(其中有第一個因數的位數比第二個因數的位數少、積的小數末尾有0和積的小數位數不夠等多種類型同時出現的小數乘法計算,讓學生充分地交流和發表意見,教師適時給予指導,幫助學生全面掌握小數乘法的計算方法。)
2. 練習二第2題(基本應用)。
(1)幫助學生理解題意,指導學生看懂每種商品各有多少千克。
(2)引導學生回顧單價、數量和總價之間的關系。
(3)學生獨立完成。
(二)拓展練習
補充題:在下面算式的括號里填上合適的數。(你能想出不同的填法嗎?)
0.48=( )×( )
=( )×( )
【設計意圖:通過分層次的練習,旨在讓學生通過基本計算全面掌握小數乘法的計算方法,培養學生的運算能力;通過基本應用感受小數乘法在現實生活中的實際應用,培養學生的應用意識;通過拓展練習進一步體會因數與積小數位數之間的關系,培養學生靈活運用小數乘法計算方法的能力。】
五、全課總結,暢談收獲
說說這節課你有什么收獲?
六、課堂練習
練習二第3、4、5題。
《小數乘法》教學設計 篇5
進入五年級第一個單元安排的是小數乘法的計算,小數乘法是在整數乘法的基礎進行的。原本以為學生已經對整數乘法非常的熟練,學習其小數除法應該不會有什么困難,但是在實際的教學過程中,并不是我想像中的那么順利。
首先我認為是對算理不理解。如:0.75×0.3,先把0.75擴大100倍,0.3擴大10倍,按照75×3來計算得225,再將得數縮小回去1000倍(即小數點向左移動三位)得0.225,就是0.75×0.3的結果。學生會出現因數3與因數中的0相乘的現象,說明他們沒有看成75與3的相成,而是按照以前整數乘法的順序兩個因數中的每個數字都依次相乘一遍 。 這就違背了小數乘法的算里與計算方法。不但使計算過程繁雜了,而且小數點位置也出現問題,在因數相乘過程中就將小數點點上了。
其次,是 計算馬虎。(1)忘記進位。滿十進一學生清楚得很,可是計算過程中丟三落四的毛病屢犯,不是不會,就是粗心。(2)忘記點小數點,按照整數乘法計算完后,忘記向左移動小數點。(3)橫式忘記寫得數,或者橫式沒有化簡。
再次,學生不會對位。如:32×0.006,應該末尾對齊,有的學生開頭對齊、有的學生末尾對齊了,前面的三個0都與3對齊。
這是我在教學小數乘法時遇到的一些問題,在反復的強調與練習中已有了很大改善,學生的計算能力有很大提高,但個別學生仍會出錯,還需要繼續練習,在習題中逐步改掉不足。
《小數乘法》教學設計 篇6
(一)教學內容
本單元的主要內容包括:單元主題圖、小數乘整數、小數乘小數、積的近似值、解決問題、整理與復習。
(二)教學目標
1、知識與技能
(1)掌握小數乘法的筆算方法,能正確計算較簡單的小數乘法,能在解決具體問題的過程中,選擇合適的方法(口算、估算或筆算)進行計算。鼓勵學生獨立探索,提倡策略多樣化。
(2)掌握小數乘法的估算方法,進一步強化估算意識。培養估算能力。
(3)能借助計算器進行較復雜的小數乘法計算,解決簡單的實際問題。體會小數乘法在現實生活中的廣泛應用。
(4)掌握保留積的近似值的方法,會根據具體情況保留積的近似值。
2、過程與方法
通過創設情境,探究現實生活中小數乘法的問題;在合作交流、探索與思考中,感受新舊知識的聯系與區別,有效地運用原有知識推動新知識的學習;在解決問題的過程中,深化對所學知識理解,增強學生的應用意識。
3、情感、態度與價值觀
感受小數乘法在實際生活中的應用,體驗小數乘法的應用價值,通過課本知識與實際問題的聯系,增強學生自主探究的欲望,獲得成功的體驗,堅定學生學好數學的信心。
(三)教學重難點、關鍵
1、重點::理解小數乘法的意義,掌握小數乘法的計算方法;強化估算意識,培養估算能力;會求積的近似值,并能根據具體情況保留積的近似值。
2、難點:積的小數點位置的確定;根據具體情況保留積的近似值。
3、關鍵:讓學生通過現實情境理解小數乘法的意義;啟動學生原有的認知經驗,讓學生在整數比較和辨析中抓住新知識的關鍵所在-----積的小數點位置的確定;思考如何在原有知識的基礎上找到解決新問題的辦法的途徑,從而主動地掌握新知識;其間,突出對算理的探究,引導學生切實掌握小數乘法的計算方法。
(四)教學思路
本單元主題圖呈現生活中應用小數計算的數學情境,激發學生的學習興趣和動力;小數乘整數是學生借助整數乘法的有關知識探究小數計算方法的開始,學生通過探究,初步感知小數乘法的計算方法;然后通過小數乘小數的教學,深化學生對小數乘法計算方法的理解,歸納出小數乘法的計算方法,并要求學生將掌握的計算方法靈活應用于解題實際,提高學生對小數乘法計算方法的掌握水平;在此基礎上,再通過積的近似值的學習,鞏固小數乘法的計算方法,同時讓學生理解生活中為什么需要積的近似值以及如何處理積的近似值;解決問題是學生體驗小數乘法的應用價值的重要途徑,在解決問題的過程中,學生可以掌握一些新的解決問題的策略,提高解決問題的能力;最后通過整理和復習,溝通本單元知識與知識之間的聯系,提高學生對本單元知識的掌握質量。
(五)教學探討(小數乘整數)
下面我就其中的一節課來談談突破重難點的方法。
本節知識包括單元主題圖、2個例題、1個課堂活動和練習一1---6題。重點突破小數乘整數的計算方法、積的小數點位置的確定。
單元主題圖采用了市場購物的情境,通過購物呈現小數乘法在現實生活中的具體應用。通過單元主題圖,一方面引發學生學習小數乘法的欲望;另一方面讓學生體會所學知識與現實生活的聯系,增強學生的應用意識。
在例1的教學中,由于題中采用的蔬菜單價是小數、買菜的數量是整數的方式呈現小數乘整數的計算情境,這就給教師 的教學留有較大的空間,教學中教師可以先把單價調整為整數,喚起學生對整數乘法相關知識的積極回憶后,再把單價改成小數來思考。這樣可以有效地運用原有知識推動新知識的學習,用整數乘法的計算方法為小數乘整數的計算提供借鑒,讓學生在此基礎上探討新的計算方法。
在探討小數乘整數的計算方法的過程中,應放手讓學生探討怎樣利用原有知識來解決新情境的問題。學生可能提出“用連加的方法算”,也可能提出“把元化成角來算”,這時教師要重點抓住學生對新知識探討有積極意義的思路,啟發學生思考“為什么要把元化成角來做”,讓學生明白這是把小數乘法轉化成整數乘法來計算的思路后,再引導學生沿著這個思路積極地思考,探討出小數乘整數的計算方法。
教學例2的時候,要加強和例1的比較,讓學生明白例2中出現的新問題,重點引導學生思考積的末尾有0怎樣確定積的小數點位置的問題。這是小數乘整數計算中最容易出問題的地方,是小數乘法中的一個教學難點。教師指出因數末尾有0的小數乘法“可以這樣寫豎式”,也就是讓學生明白整數乘法豎式的簡便寫法在小數乘法中同樣適用。不同的是,在思考確定積的小數點時,一定要用25×60的整數積1500為基礎,數出與因數同樣多的小數位數,再點上小數點
兩個例題教學完以后,應該組織學生對小數乘整數的計算方法進行討論,重點思考“怎樣確定積的小數點的位置”。這樣總結出用文字表述的運算規律與方法,有利于學生按照這樣的操作規則進行小數乘整數的計算,提高對所學知識的掌握水平。
課堂活動是用議一議的方式溝通整數乘法和小數乘法的聯系。教科書用圖畫的形式向學生呈現了4組算式,讓學生比較每組中的兩個算式有哪些不同。學生通過比較可以發現,小數乘整數和整數乘法的計算方法基本上是相同的,不同的是小數乘整數的乘法看成整數相乘,乘出積后還要確定小數位數。這樣溝通小數乘整數與整數乘法的聯系,有利于加深學生對小數乘整數計算方法的理解,也有利于幫助學生形成整體認知結構。
練習設計:練習題可以用紅星等你摘的方法來出現。
練習一第1題口算,教師要引導學生總結口算小數乘整數的乘法時要注意些什么,使學生理解不但要注意兩個數相乘的口算過程,還要注意因數的小數位數。第2題要求學生不計算,直接用第一豎列的積填寫后面表格里的積,填完后還要說一說為什么要這樣填,通過這樣的追問加深學生對小數乘法計算方法的理解。第3題明確用筆算、感受到因數的小數位數在小數乘法計算中的重要作用。第4題用連線的方式,增強練習的趣味性。第5題是計算圖形面積的問題,有關的圖形面積公式學生是早就掌握了的,不同的是圖形的邊長由整數變成了小數,由此學生也可以從中感受到現在學習的知識與原來學習的知識的聯系與區別。第6題除了要求學生正確計算出結果外,還可以通過上下排積的變化比較,讓學生感知積的變化規律。這些問題的現實性都很強,學生可以通過對這些問題的思考,一方面加深對所學知識的理解,提高學生對知識的掌握水平;另一方面可以從中增強學生的應用意識,提高學生解決實際問題的能力。
本節課一是注重從現實生活中引入教學內容,這樣結合學生實際設計教學,既可以激發學生的學習興趣,又能讓學生感受到小數乘法在生活中的廣泛運用;二是重視學生活動建立在學生原有認知基礎上,教學中采用整數乘法和小數乘法同時出現的方式,讓學生通過對比發現原有知識不能解決所有問題,需要學習新的知識,從而產生認知的需求;三是重視學生對小數乘整數算法的探索過程,學生對算法的理解經歷了“初步感知——加深理解——運用升華”的過程,這樣不但體現了教學的層次性,還有助于學生對算法的理解和掌握;四是注重主題圖的運用,首先運用主題圖中學生熟悉的生活情境提出問題,然后用主題圖中的問題來進行新知識的探索,接著又回到主題圖,運用所學的知識解決問題,最后利用主題圖為學生再造認知沖突,給學生留下思維的空間,把數學學習由課內延伸到學生實際生活中。
以上是我個人的一點看法,希望能和各位老師一起探討、交流,多提寶貴建議。
《小數乘法》教學設計 篇7
1、小數乘整數:
意義——同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少,或3個1.5的和是多少。
2、小數乘小數
意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
3、小數乘法的計算方法:先把小數擴大成整數,按整數乘法的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點,積的小數部分位數不夠時,要在前面用0補足。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡。
4、規律:一個數(0除外)乘大于1的數,積比原來的數大;
一個數(0除外)乘小于1的數,積比原來的數小。
5、求近似數的方法一般有三種:
⑴四舍五入法;⑵進一法;⑶去尾法
6、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
7、小數四則運算順序跟整數是一樣的。
8、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a 乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
除法:除法性質:a÷b÷c=a÷(b×c)
《小數乘法》教學設計 篇8
1、小數乘整數(p2、3):意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數(p4、5):意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0占位。
3、規律(1)(p9):一個數(0除外)乘大于1的數,積比原來的數大;
一個數(0除外)乘小于1的數,積比原來的數小。
4、求近似數的方法一般有三種:(p10)
⑴四舍五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
6、(p11)小數四則運算順序跟整數是一樣的。
7、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
9、小數除以整數的計算方法(p16):小數除以整數,按整數除法的方法去除。,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有余數,要添0再除。
10、(p21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按“除數是整數的小數除法”的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
11、(p23)在實際應用中,小數除法所得的商也可以根據需要用“四舍五入”法保留一定的小數位數,求出商的近似數。
12、(p24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。
②除數不變,被除數擴大,商隨著擴大。③被除數不變,除數縮小,商擴大。
13、(p28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
第四單元簡易方程
16、(p45)在含有字母的式子里,字母中間的乘號可以記作“·”,也可以省略不寫。
加號、減號除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a·a或a ,a 讀作a的平方。 2a表示a+a
18、方程:含有未知數的等式稱為方程。
使方程左右兩邊相等的未知數的值,叫做方程的解。
求方程的解的過程叫做解方程。
19、解方程原理:天平平衡。
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
20、10個數量關系式:加法:和=加數+加數 一個加數=和-兩一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的檢驗過程:方程左邊=…… 23、方程的解是一個數;
=…… 解方程式一個計算過程。
=方程右邊
所以,x=…是方程的解。
第五單元多邊形的面積
23、公式:長方形:周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】 字母公式:c=(a+b)×2
面積=長×寬 字母公式:s=ab
正方形:周長=邊長×4 字母公式:c=4a
面積=邊長×邊長 字母公式:s=a
平行四邊形的面積=底×高 字母公式: s=ah
三角形的面積=底×高÷2 ——【底=面積×2÷高;高=面積×2÷底】 字母公式: s=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: s=(a+b)h÷2
——【上底=面積×2÷高-下底,下底=面積×2÷高-上底;高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導:剪拼、平移 25、三角形面積公式推導:旋轉
平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當于平行四邊形的底; 平行四邊形的底相當于三角形的底;
長方形的寬相當于平行四邊形的高; 平行四邊形的高相當于三角形的高;
長方形的面積等于平行四邊形的面積, 平行四邊形的面積等于三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高。 因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導:旋轉 27、三角形、梯形的第二種推導方法老師已講,自己看書
兩個完全一樣的梯形可以拼成一個平行四邊形, 知道就行。
平行四邊形的底相當于梯形的上下底之和;
平行四邊形的高相當于梯形的高;
平行四邊形面積等于梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
30、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區) 0 5 4 0 0 1
前3位表示郵區
前4位表示縣(市)
最后2位表示投遞局
35、身份證號碼:18位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢臺市 邢臺縣 出生日期 順序碼 校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。