用“轉化”的策略解決問題
小組交流,教師巡視,并指導。
3.指導驗證。
師:你們組是怎么想的?指名回答。你在觀察這兩幅圖的時候有什么發現嗎?
學生說想的過程,并投影出示學生的作業紙。
(生可能回答上半圓平移下來就是下半圓,他們的面積吻合;“花瓶”突出來的半圓就是瓶口凹下去的半圓,只要分別把他們旋轉180度就可以了)
教師及時評價并用課件演示剛才學生說的過程。
提問:這兩幅圖經過旋轉和平移后都變成了什么圖形?(生:長方形。)
提問:變成長方形后它們的面積相等嗎?為什么?(生:相等,長和寬一樣,所以面積一樣。)
教師再次演示變化過程,提問:在兩幅圖變化的過程中,什么不變?(面積)都把它變成了誰的面積?(生:長方形。)
小結:因為我們無法一下子看出這兩個平面圖形的大小,但分別把它們轉化成一個長方形后,我們就能比較這兩個圖形的大小了。在解決問題的過程中,我們經常會用到這樣的策略——轉化。(板書:解決問題的策略——“轉化”)
三、應用策略,歸納方法
1.談話:剛才,我們運用轉化的策略把不規則的圖形變成規則圖形來比較大小。在有關平面圖形的計算中經常會用到“轉化”的策略。請同學們試著來解決以下問題。
(1)練習十四第2題的左邊兩幅圖。
學生獨立思考后口答,教師相機演示課件。
(2)“練一練”右邊的圖形和練習十四第3題的第一幅圖。
提問:你能用比較簡便的方法快速地求出圖形的周長嗎?
學生先獨立思考,然后和同桌交流。
個別學生介紹自己的方法,教師相機演示課件。
小結:在解決這些問題的過程中,我們都用到了怎樣的策略?(轉化)我們要把復雜的圖形轉化未為簡單的圖形,具體地說又是用到了以前學習的哪些知識呢?(平移和旋轉)
四、回顧知識,體驗轉化
1.談話:其實我們以前學過的知識中,很多都運用了轉化的策略,哪位同學來說說看。
指名回答,生可能會說:1.推導三角形公式時,把三角形轉化成平行四邊形。2.推導梯形時把梯形轉化成平行四邊形。3.推導圓面積時,把圓面積轉化成長方形。4.計算小數乘法時把小數乘法轉化成整數乘法。5.計算分數除法時把分數除法轉化成分數乘法等等。
在學生說的過程中請學生說說推導的過程,并相應演示推導過程。
小結:看來,“轉化”的確是一種非常重要的解題策略,在剛才的交流和演示的過程中,你覺得這種策略有什么優點?(學生交流后教師相機板書:化復雜為簡單,化未知為已知,化不規則為規則------)
五、拓展運用,提升策略
1.出示試一試:計算1/2+1/4+1/8+1/16
提問:(1)這些分數分別表示什么意思?生根據分數的意義回答,并強調單位“1”相同。(2)相鄰的分數是什么關系?(后一個是前一個的1/2)
師:我們一起來畫圖表示看看。師根據題目依次畫圖。
師:這題我們又可以怎樣轉化呢?學生看圖解答。
指名回答。1-1/16=15/16
(如果學生回答不出,師提示:求陰影部分,空白部分又是多少呢?)
提問:如果給這道題目再添上一個加數1/32,和是多少?再加上1/64呢?如果一直這樣加下去,加到1/1024呢?
小結:在解決這個分數加法的計算題時,我們借助圖形來分析問題,把復雜的算式變成了簡單的算式。這也是運用了“轉化”的策略——數形結合。(板書)