北師大版五年級上:第一單元倍數(shù)與因數(shù) 教案
2. 掌握獨立思考、合作交流的學習方法。
3. 在研究過程中感受數(shù)學文化的魅力。
《3的倍數(shù)特征》教學案例研討
〖教學過程〗
師:同學們,我們已經(jīng)知道了2、5的倍數(shù)的特征,那么3的倍數(shù)會有什么特征呢?誰能猜測一下?
生1:個位上是3、6、9的數(shù)是3的倍數(shù)。
生2:不對,個位上是3、6、9的數(shù)不定是3的倍數(shù),如l 3、l 6、19都不是3的倍數(shù)。
生3:另外,像60、12、24、27、18等數(shù)個位上不是3、6、9,但這些數(shù)都是3的倍數(shù)。
師:看來只觀察個位不能確定是不是3的倍數(shù),那么3的倍數(shù)到底有什么特征呢?今天我們共同來研究。(揭示課題)
師:先請在下表中找出3的倍數(shù),并做上記號。(教師出示百以內(nèi)數(shù)表,學生人手一張。在學生的活動后,教師組織學生進行交流,并呈現(xiàn)學生已圈出3的倍數(shù)的百以內(nèi)的數(shù)表。)(如下圖)
師:請觀察這個表格,你發(fā)現(xiàn)3的倍數(shù)什么特征呢,把你的發(fā)現(xiàn)與同桌交流一下。
學生同桌交流后,再組織全班交流。
生1:我發(fā)現(xiàn)10以內(nèi)的數(shù)只有3、6、9能被3整除。
生2:我發(fā)現(xiàn)不管橫的看或豎的看,3的倍數(shù)都是隔兩個數(shù)出現(xiàn)一次。
生3:我全部看了一下,剛才前面這位同學的猜想是不對的,3的倍數(shù)個位上0~9這十個數(shù)字都有可能。
師:個位上的數(shù)字沒有什么規(guī)律,那么十位上的數(shù)有規(guī)律嗎?
生:也沒有規(guī)律,1~9這些數(shù)字都出現(xiàn)了。
師:其他同學還有什么發(fā)現(xiàn)嗎?
生:我發(fā)現(xiàn)3的倍數(shù)按一條一條斜線排列很有規(guī)律。
師:你觀察的角度與其他同學不同,那么每條斜線上的數(shù)有規(guī)律嗎?
生:從上往下觀察,連續(xù)兩數(shù)都是十位數(shù)增加1,而個位數(shù)減少1。
師:十位數(shù)加1、個位數(shù)減1組成的數(shù)與原來的數(shù)有什么相同的地方?
生:我發(fā)現(xiàn)“3”的那條斜線,另外兩個數(shù)12和21的十位和個位上的數(shù)字加起來都等于3。
師:這時一個重大發(fā)現(xiàn),其他斜線呢?
生1:我發(fā)現(xiàn)“6”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于6。
生2:“9”的那條斜線上的數(shù),兩個數(shù)字加起來的和都等于9。
生3:我發(fā)現(xiàn)另外幾列,除了邊上的30、60、90兩個數(shù)字的和是3、6、9,另外的數(shù)兩個數(shù)字的和是12、15、18。
師:現(xiàn)在誰能歸納一下3的倍數(shù)有什么特征呢?
生:一個數(shù)各個數(shù)位上數(shù)字之和等于3、6、9、12、15、18等,這個數(shù)就一定是3的倍數(shù)。
師:實際上3、6、9、12、15、18等數(shù)都是3的倍數(shù),所以這句還可以怎么說呢?
生:一個數(shù)各個數(shù)位上數(shù)字之和是3的倍數(shù),這個數(shù)就一定是3的倍數(shù)。
師:剛才是從100以內(nèi)數(shù)中發(fā)現(xiàn)了規(guī)律,得出了3的倍數(shù)的特征,如果是三位數(shù)甚至更大的數(shù),3的倍數(shù)的特征是否也相同呢?請大家再找?guī)讉數(shù)來驗證一下。
學生先自己寫數(shù)并驗證,然后小組交流,得出了同樣的結(jié)論。
〖案例點評〗
本案例主要有以下幾個特點。
1.以學生原有認知為基礎,激發(fā)學生的探究欲望。教師利用學生剛學完“2、5的倍數(shù)的特征”產(chǎn)生的負遷移,直接拋出問題,激活了學生的原有認知,學生自然而然地會將“2、5的倍數(shù)的特征”遷移到解決“3的倍數(shù)特征”的問題,產(chǎn)生認知沖突,萌發(fā)疑問,激發(fā)強烈的探究欲望。本案例中,學生很快進入問題情境,猜測、否定、反思、觀察、討論,大部分學生漸漸進入了探究者的角色。